
Aaron Zinman
Personal Metadata: Order from Clutter

Cognitive Science 190 2002-2003: Honors Thesis

Advisors:
David Kirsh
John Batali
Dan Bauer

PURPOSE

How can we improve people’s work by adding digital metadata to their

environment? Metadata, construed broadly, is information about objects and their related

events and processes. The most familiar forms of metadata are subject, title, author, date

and related descriptions of articles, papers and books. But the concept is comprehensive

enough to include annotations found on a document, data about how a document has been

used, when, by, whom and how often, and even where it is to be found on a desk or in a

library. My objective in this research project is to explore how to digitally augment work

using AI techniques to track some of the significant interactions that occur in them.

PROBLEM

Metadata has long been used to augment physical environments. Libraries, in

particular, need a method by which books and other artifacts can be efficiently tracked

and identified by multiple attributes. Standards such as Open Geospatial Interoperability

Standard (OGIS) have been developed to solve specific superficial problems: facilitating

interoperability of data across sources. The World Wide Web attempted to move beyond

basic level metadata. Tim Berners-Lee developed it with the vision of metadata linking

together documents in an infinitely large semantic web. Yet there has been little attempt

at recognizing and understanding the deeper structure of local environments: digital or

physical.

Figure 1. Sketch of an office of the future using a hybrid environment.

Figure 1 is an artist’s depiction of a future distributed hybrid environment in which team

members in offices at UNC and CMU are relying on virtual objects to help them

collaborate. Such research may be a forerunner of the future but it puts too little

emphasis on the cognitive questions that arise when people use digital tools to augment

their physical environments. For example, what kinds of mental representations of the

environment and its contents are the collaborators sharing? Is their conceptualization of

the same information identical? What factors influence the implicit understanding of

these virtual objects? Do they affect all people in the same way? What deeper structures

underlie the interaction between the objects and the environment, and how can it be

modeled? How can we use cognitive engineering to optimize and record the mental

projection of metadata onto these objects? Can we store this metadata in a natural way to

later facilitate better and easier retrieval?

People project structure onto their environment, saturating objects with meaning.

The document I last touched, the article that X gave me, the paper I put all my

annotations on. All these descriptions are associations and attributes that help people

manage the resources around them. Often they are work related, task specific, personal,

and context relative. The power of distributed cognition comes from the ability for

people to communicate their projected structures, or metadata, to aid others. This

communication may be explicitly given by the individual, or is implicit based on the

situation, common beliefs, cultural understandings, etc. How can we harness these

properties using digital support to help facilitate collaboration as well as understanding of

our own environment? Can a system discover the effective description of the

environment that allows machine inference of the function of office resources, which

may not be obvious for the casual observer? This project aims to address all these issues

in a way that facilitates an optimization of workflow by solving a small part of a much

bigger system.

BACKGROUND

The current idea of this project comes from a shift of focus from the first iteration

of the project design. The first iteration was to implement enhanced digital supports for a

hybrid Physical-Virtual Collaborative Environment. A Virtual Collaborative

Environment (VCE) is defined as (Churchland, 2001):

A computer-based, distributed, virtual space or set of places. In such places, people can
meet and interact with others, with agents or with virtual objects. VCEs might vary in
their representational richness from 3D graphical spaces, 2.5D and 2D environments, to
text-based environments. Access to VCEs is by no means limited to desktop devices, but
might well include mobile or wearable devices, public kiosks, etc.

We had decided that a hybrid VCE was a natural evolution of the concept, allowing

participants to use physical objects alongside virtual objects in a hybrid system. Using

computer vision to track and identify previously known objects, digital supports such as

Onoto pens and Tablet PCs to capture live annotations, and rear-projected tables to

present virtual copies of physical documents that reflect live changes, the traditional

modality of VCEs were extended significantly. While many researchers are currently

looking for ways to create more natural setups for projecting the virtual world into the

physical (Stuerzlinger, 1998; Fuchs, 1998), there is a lack of concentration on how the

two worlds interact. We decided that the deepest problem of VCE’s is not how to inhabit

and organize actions in VCE’s, but how to live in the physical world while working with

digital elements.

It is very desirable to have the ability to track and recognize physical objects for

Virtual Collaborative Environments for several reasons. First, the biggest problem with

remote collaboration is the lack of a distinctive shared physical space. Normally, agents

interact with the ability to pass objects between each other and leave currently unused but

relevant items on a shared physical table. It is very natural for the agents to be able to

look freely directly at any person or item and process any stimuli accordingly. In typical

video conferencing, these natural encounters can be difficult to reproduce. There is not

sense of a shared common space, other than what some software allows for in terms of

either a whiteboard or one particular document that both sides have agreed to edit in

tandem. It is nearly impossible to search a remote location for a sense of what the other

agent has to offer as it could in a physical conference room (i.e. shuffling papers).

Implementing digital tracking and identification, a virtual space may be created that

mimics the physical environment, allowing for free flow of information to be processed

by any agent in a natural manner. With digital support, annotations and other metadata

can be shared with the object.

Within our hybrid environment, we have objects and actors. Objects typically are

physical or digital documents and have a central location of storage of their metadata.

Actors are the collaborators in the environment and can perform various actions on the

objects. The network tracks these actions and stores them in the objects metadata.

However, it is not only the explicit actions that are stored in the metadata. Higher-level

relations between objects and each other as well as objects and their environment play a

key role in our system. When an actor puts a document on top of a stack of other papers,

a relation is created between the adjacent papers on the stack and the new document. To

describe relationships between objects in the environment using metadata is to create

ontologies. Ontology is well defined by Broekstra et al. as:

… a formal, explicit specification of a shared conceptualization. A conceptualization
refers to an abstract model of some phenomenon in the world which identifies the
relevant concepts of that phenomenon. Explicit means that the type of concepts used and
the constraints on their use are explicitly defined. Formal refers to the fact that the
ontology should be machine processible, i.e., the machine should be able to interpret the
information provided unambiguously. Shared reflects the idea that an ontology captures
consensual knowledge, that is, it is not restricted to some individual, but accepted by a
group.

This project uses an ontology to be able to appropriately describe the environment and its

transactions. This ontology provides a descriptive language for querying the environment

using defined notions of meaning, including any appropriate thresholds or other

qualifiers. Each rule in the ontology has been crafted by hand and is not learned.

It is common to find ontologies expressed in a common file format. One such

popular XML-based language is RDF (Resource Description Framework) and it is now a

W3C standard. It supports the ability to describe objects using a common vocabulary,

allowing an agent to be able to understand any part of a definition that it knows about.

This is typically used to share information across non-compatible databases. Since

systems such as OGIS have been created, many proposals to generalize metadata

brokerage have surfaced (Kashyap, 2000; Maedche, 2002). Many schemata have been

designed to run as layers on top of RDF, using building off RDFS (Resource Description

Framework Schema). One popular extension to RDFS is OIL (Fensel, 2001).

<rdfs:Class rdf:ID=”herbivore”>
<rdf:type

rdf:resource=http://www.ontoknowledge.org/oil/RDF-
schema/#DefinedClass />

<rdfs:subClassOf rdf:resource=”#animal” />
<rdfs:subClassOf>

<oil:NOT>
<oil:hasOperand rdf:resource=”#carnivore”/>

</oil:NOT>
</rdfs:subClassOf>

</rdfs:Class>

Figure 2: In this example Fensel provided, we have defined an herbivore to be an animal

but not inherit the properties of a carnivore

OIL allows us to comprehensively tag explicit metadata in a simple fashion,

providing a straightforward way to incorporate the ways that data can be used across all

components of the system. Additionally, the model forces us to take an object-oriented

approach, which reinforces good coding practice in an environment where object-

orientation is the foundation. Furthermore, OIL allows us to define ontologies in ways

such that the skeleton or framework of the ontology is readable by humans in a logical

fashion, which both facilitates creating and understanding computer-generated

ontologies. It is hoped that future versions of this project will use OIL as its knowledge

base.

Recent work in visualizing GIS information has used organizational cognitive

theories for navigating and classifying data effectively. Their methods primarily deal

with the fact that “our stored knowledge is, generally speaking, organized by kinds

vertically within hierarchy (taxonomies), and by parts (partonomies) within categories.

At the basic level, our knowledge is mostly concerned with parts” (Mennis, 2000). They

continue categorical theory to rely on attributes of specific objects as classifiers under a

broader category. These attributes rely on a “graded internal structure” to a category to

define its parts. For example, a “mug” might reflect a slight morphological change to the

“cup” category. Mennis also builds on the Triad framework where “entities [are

decomposed] into interrelated location-based (where), time-based (when), and object-

based (what) information” (Mennis, 2000). The “what” of an object holds its relation,

both to a super-structure (category) and its unique attributes (parts). The where and when

of an object can be tracked using video cameras and digital support. Utilizing these

theories, we can build our metadata modeling cognitive storage for easier retrieval.

If humans construct linguistic meaning from non-linguistic conceptual systems (Potter,

1986), then perhaps knowledge of a document spanning all its aspects is stored similarly.

If this is true, then various attributes can be used to identify documents within a

contextual setting. For example, given a combination between temporal relation (“you

used the document before working on the Minendez Case”) and specific parts (“it

contains graphs, financial information, and is approximately 6 pages long”), one might be

able to remember the specific document that is being queried. This natural method of

query can be done to the system in the same way one might query another person, using

only the parts of the Triad framework that they can remember.

One of the more significant aspects of the triad framework is the “what” category.

People have to accommodate in their mental representations of objects ordinary metadata

and personal metadata. Ordinary metadata are categories that the Dublin Core and

MARC look at, such as subject, title, and author. In a physical world, ordinary metadata

could consist of colors of a paper, dimensionality, and font size. Personal metadata is a

unique representation of the same object due to the various relationships, contexts, and

events that occur separately to each individual. The foundation of personal metadata is

the events and activities that shape the types of interactions an object may have with its

environment. These actions may determine the fate for one object or desire for another.

Often ad-hoc categories are projected onto objects based on a number of factors. History

of objects leads to strategies of how to manage items which may not be relevant to the

immediate context. Whittaker and Hirschberg discovered strategies of piling and filing

that were independent to a person’s job type. In their study, users effectively switched

representations of known objects to re-categorize for future retrieval. Knowledge of the

future is often projected by creating environments which aid to the retrieval of situated

objects. Creating a pile for things that are needed in the meeting later today is one

possible method. Typically much of the information needed to understand relations

between ad hoc groups can be difficult to assess from the explicit data on the objects. It

is simply not needed when personal metadata is able to efficiently use little queues to

recall categorizations.

The uniqueness of personal metadata leads to great difficulty with identifying ad-

hoc categories using AI. This is because “people conceptualize a category differently

across situations, with each conceptualization embedded in a background situation. A

single situation-independent concept does not represent the category; nor does the

concept only represent the category in isolation, independently of the situations in which

it occurs” (Barsalou, 2000). For example, “cheese, Frank, Madonna CD” could be items

that belong to the categorization “things I am bringing to the picnic”. Typically these

items would never have been associated, and probably never should be. Generating and

keeping semantic links between such objects from previous ad hoc relations has no real

meaning outside the current context and is more likely to generate false positives on

future searches. However, the situation “going to a picnic” is very different from the

usage this system was intended to capture. In real-life working environments, active

objects that are commonly in the same ad hoc categorization are likely to have

meaningful semantic links. An object is said to be active when it is frequently accessed,

modified, or moved relative to all of objects in ones environment. For example, when

working on a particular project certain textbooks or documents may be constantly piled

together. The significant activity of these objects hints that their placement is shaped by

much more thought than if they were placed so the user could shift focus.

However, it is unwise to make assumptions of thresholds for linkage based on

activity. Most studies of ad hoc categories have demonstrated that people tend to judge

items differently—a matter that becomes worse when compounded with different

working strategies (Kurts, 2001). Knowing the statistical averages of piling, filing, and

organizational strategies of the users is necessary for reliable automated semantic linking

based on usage. And that’s just for basic office maintenance.

METHOD

Overview

To address the issues of digital support using metadata, I am looking towards a

“Big Brother” system that monitors your actions, interprets them, and then stores them

for later retrieval.

Monitoring

Ideally the system would monitor a work environment in the physical and digital

domains. In the physical world, cameras placed throughout the working environment,

combined with RDIF tags and sensors would be aware of the locations and identities of

all objects and persons in the physical environment. Enhancers such as Onoto pens

would allow annotations and any other writing on paper in the context aware office to be

captured and noted by the system, categorized by what was the note was taken on.

Originally, this project attempted to give a proof of concept Big Brother support for

automatic document identification and tracking in a constrained environment, but in the

interest of time the project shifted focus towards digital-only support.

In our digital world, events in an object-oriented graphical environment can be

captured with much more ease than their physical counterparts. All objects that enter, get

called by, or leave the system during sessions may be annotated by an event stream

interpreter using higher level rules. For example, instead of simply noting that a

particular program created a file some time after opening a previous one, the system sees

the type of program (WinZip), notes the action taken in the program (decompress), and

creates a meaningful link between the compressed file and its output. This way we can

later trace the files to their original archive, along with any meaningful relationships the

original archive may have. In this project, we have ignored the problem of monitoring

events automatically. Interpreting system-level calls is not only operating system and

application dependent, but is not the type of scientific problem we’re attempting to solve.

Problems of interpretation have been looked at and are solved using the ontology I have

constructed in a system impendent way. Furthermore, the system should interface with

existing environments and applications to allow additional metadata to be placed without

the need to change existing representations.

Data is needed to inspire the design of an ontology as well as information to

process to assess the system’s reasoning. To acquire data I captured 120 minutes of

video of myself preparing for the Honors Presentation. The video was then annotated

and put into a database according to my ontology.

Interpretation

In order to interpret the events that are recorded, as well and provide a consistent

language for querying the database, an ontology is needed to provide definitions to define

and represent the environment. Much of the intelligence of the system comes in its

representation of events. To create the ontology I decomposed many tasks, separating

out key parts to allow for a modular design. Additionally, I generated many queries that I

wished for the system to be able to answer. For each question, I determined the

plausibility for my system to be able to answer it, as well as what limitations the question

should have. Using the pseudo-algorithm, I then modified my ontology to reflect the

structure of the current search as well as the previous. This ontology is not intended to be

the complete ontology for the envisioned system, but rather one that provides adequate

description for the digital world. However, much of the ontology was created with

flexibility in mind to be able to scale to the physical world.

Retrieval

Information is retrieved from the database using a combination of a reasoning

engine as well as some form of a GUI manager. In the envisioned system the user would

use some form of natural language querying and/or a 3D virtual world that would allow

people to ask spatial queries more intuitively. In this project a rudimentary GUI was

created, however it was not the primary focus and received much less time compared to

the rest.

Motivation

The system must have an understanding of how to model the environment for

relations to have valid meaning. Accurate “understanding” is achieved by human-

designed ontological representations rather than machine learning. While much research

is currently being put into ontology learning, typically environments which provide good

results are heavily bounded (Maedche, 2002). This author feels that ontological learning

as a basis for foundation of representing the user’s environment is not only be

inappropriate application for this project, but the current status is far enough away that it

could easily shift the main focus away from the current goals. Unfortunately, there are

future aspects of this project which may require learning for the individual user, yet the

principal structure should remain the same.

States may change with the position of the individual nodes (although they are not

the defining factor for a change in state), altering the context of the document. For

example, a document’s explicit metadata about its contents and author would not change

as the document moves from a desk to inside a filing cabinet, but its implicit taxonomy

changes due to its new inherited classification. This is compatible with the Triad

framework, where the documents category changes but not its parts. Because the system

maintains a history of the states, relations due to past context may be preserved if a

certain indexing heuristic requires previous associations. Furthermore, a heuristic may

take advantage of the temporal relations between associations to other objects and their

previous states. This aspect of the system is extremely useful for visualization.

Documents can contain explicit metadata that do not rely on any inherited

property, but instead could be entered by the user. At any point, subject, keywords,

author, related works, amongst other items can be independently stored metadata.

Keywords are single references, and are not cross-linked to avoid excessively high

dimensionality, which has been shown to give worse results in machine-generated

categorization (Wang, 2002). Relations to abstract entities such as stacks of papers are

stored differently depending on their stability. Stable category memberships could be

links to known categories that are not run-time generated, or are ad-hoc categories for

which some determining factor has granted elevation to permanent status. Examples of a

stable category would be “Computers”, “Cognitive Science”, or “Recipes”. Some

determining factor (ontological learning, bigram categorization, or manual input) would

need to explicitly create the membership to a stable category. Unstable relationships,

such as stacks that form ad-hoc categories, would remain nameless unless specifically

told otherwise by the user. Additionally, their status and meaning changes as they are

created and destroyed, increasing the complexity for effective searching.

Stacks of papers can be analyzed for their content. Each stack itself is an ad-hoc

creation: a temporary grouping that contains one or more implicit relationships. The

relationships could be of any ontological combination, from papers that are related to a

certain subject to things that were in my inbox at 10 AM. Other types of objects can be

attached to each other, such as Post It notes and annotations. Post Its are different from

articles, which are different form other types of annotations, giving each a different

meaning and ontology/context. They are both objects yet have a strong link to other

documents, influencing the heuristic for association more than any other type of object.

Items such as annotations are stored in the model embedded in a document, because their

existence only directly references one object.

The system should exhibit both modularity and mutuality. A system exhibits

Modularity when “all elements of the system exist within certain contexts, in relation

with other elements” (Ruhl, 1989). Conversely, a system exhibits Mutuality when

“elements are not merely related, but mutually defining. The status of each element

determines and is determined by other elements; any change in one element means a

change in the nature of others” (Ruhl, 1989). In this system, each object modularly can

exist on its own or within a specific framework, but the system benefits from its ability to

create mutual links of abstract structures, enhancing later retrieval with new types of

objects to search for.

Actualities

Ontology

In theory the ontology consists of two description languages: the first to describe

the environment superficially (L1), and the other to give a representation of queries

which require inference (L2). In practice the ontology consists of the definitions of tables

in a SQL relational database and set queries. I used Microsoft SQL Server 2000 as it

allowed me to construct a database with fast and extensive search facilities without

having to re-invent the wheel. MS SQL also has many features such as full-text

searching, views, and advanced stored procedures. The views allow me to express L1 in

an elegant way such that individual queries or stored procedures in L2 depend on, rather

than explicitly calling the individual tables. Before outlining the individual languages, I

will explain how the ontology represents the user’s environment.

Environment events when recorded are inserted into the relational database. This

database shapes how we model the environment. The following figure gives the names

of the individual tables as well as a brief description on what is stored in the tables:

Table Name Brief Description
adHocGroup Relations between ad hoc groups and other objects,

description of the group
application Applications that exist on the computer
applicationCategories Gives classes to applications such as locally vs remote

oriented
category Container for different categories, intended for

documents
conversation Container for personal communication, i.e. instant

messanging

conversationMessage Container for the individual messages tied to a
conversation

email Container for individual emails
event Container for all events with references
document Container for traditional documents
domain Objects may be explicitly categorized into domains

such as neuroscience
file Container for digital files and folders
link Objects which are related to each other are ‘linked’ in

different ways
location 2D, 3D and file system locations
keyword Container for keywords on arbitrary objects
media Container for metadata on any type of media such as

pictures, video, and sound
person Container for known individuals or groups
query Stores previous queries from any application
querySpecification Provides arbitrary fields to link to queries in case the

query is more than one string
relationship Relationships between people, i.e. friend or foe
URL Container for full URLs and their associated metadata
version Relates objects to others
webdomain Container for web domains and their uses

Figure 2: Ontology super-structures

While much of the ontology is general enough to represent a majority of the tasks

that occur, certain environments require tailored representations. For example, an

informal interview demonstrated that a musician who uses professional audio programs

will typically have usage patterns which deviate from the ubiquitous Microsoft Office

and web browser user. Audio clips are loaded into Digital Audio Workstation (DAW)

projects that may be heavily shared between different projects (such as drum samples),

but deducing any nature of these samples by looking at usage patterns will only result in

false positives. Many other sets of data which appear to the user as separate entities may

all be contained in one file, such as settings for software based synthesizers or MIDI

tracks. Our current sets of metadata would not capture the distinction between these

embedded file types (as they do not exist separately) and utilize their purposes in

reasoning. Furthermore, many temporary files are created that have varying degrees of

significance (which is nearly impossible to guess), that also quite frequently are burned to

CD for review outside of any environment which we would monitor.

Part of the power of the ontology is its highly distributed nature, reflecting all the

possible relationships that naturally occur. Unfortunately, this also leads to extremely

complicated graphs that confused more than explain. For clarity purposes, I will now

give examples to explain the design motivations by demonstrating how the ontology is

used created in recording of data.

Scenario: Daily e-mail routine

Robert logs into his office computer at the start of his day. His first task is to

check his e-mail. As a Linux driver engineer, he subscribes to the Linux Kernel Mailing

List. This mailing list is very high traffic and includes many attached files each day.

Since this mailing list is general purpose, most of the messages are of little interest to

Robert. He is working on an open-source driver, for which he receives emails privately

concerning bugs in his drivers as well as links patches. Additionally, he also receives

emails from message postings on the company’s intranet as well as private emails from

his peers, friends, and family.

Robert is an advanced user, and correspondingly sets up his email client to match

his profile using explicit information. His email client uses filters to move messages into

designated folders. His LKML emails are separated into their appropriate folder by

looking at the To address. Any emails originating from the intranet can be moved by

looking at the From address. Since his friends, peers, and family are in his address book

tagged by their respective group, their emails are moved into folders according to the

From field. Since his company has installed appropriate spam blocking software, Robert

assumes any non-filtered emails are from people who are submitting bug reports and

patches.

How does the event interpreter appropriately record and annotate his email

activity? The following figure shows the stream of events for receiving one email from

an unknown person.

Event:
Timestamp: 08:42
Type: checkEmail
objType: Application

isBroken: false
Type: embed
parentType: Email
childType: File

Link:

timeStamp: 08:42
eventType: link

Event:

Name: .zip
appKey:
isDefaultOpener: true

Extension:

Application:
Name: WinZip
Type: Compression

Event:
Timestamp: 08:42

parentType: Application
childType: Email

Type: objReceived

from_personKey: NULL

timeStamp: 08:42
eventType: link

Event:

.

.

.

From: azinman@ucsd.edu
fromPersonKey: NULL
To: robert@linuxguy.com

Email:

isBroken: false
Type: domainRelation
parentType: Email
childType: domain

Link:

fName: Robert
lName: Love
email: robert@linuxguy.com
isGroup: false
isMe: true

Person:

parentKey: NULL
Type: business
Name: Driver Development

Domain:

Name: Eudora
Type: email

Application:

Name: Bug Reports
Type: business

Domain:

File:
Name: neededPatches.zip
Current Size: 1028 KBytes
isFolder: False
isCompressed: True
isDownloaded: True
extensionKey:

timeStamp: 08:42
eventType: link

Event:

Event:

objType: Application
Type: openApp
Timestamp: 08:40

User interaction across time

Figure 3: Graph of data stored during when receiving a single of email

Robert opens his email application, and chooses Retrieve Email. The interpreter

records the opening of the application and uses its own inference rules on the operating

system events to pull out the high-level event checkEmail. Email is then downloaded to

the server, triggering as many objReceived as there are emails. objReceived was chosen

over a more specific term such as emailReceived to generalize the concept of receiving an

object from another person. Since this person is not in our database, the link to what

would be the from_personKey is null. However there is a link to Robert who is to receive

the object. This decision was guided one of the principals of this ontology: generalize

first.

To demonstrate two different possible approaches, let’s examine a possible query:

“What have I received from Aaron?” Should the ontology have recorded each type of

object received in its own event, we would need to know all the types of objects and their

corresponding events to answer this question. This method does not scale well, as many

queries would need to be modified to accommodate future expansions of the ontology.

Instead, we set the type to objReceived and specify the following: who it’s from, who it’s

to, what object received it, and where the object is in our system. Should Robert only

wish to look at emails received from Aaron, he would restrict his query from the general

case to just objects of type email. This also gives us the additional advantage of better

understanding the habits of Robert. Since all queries are recorded with their full context,

we can see what kinds of information Robert filters out or keeps. Using iterative

querying, the general case would display first with other potentially relevant material.

While Robert may have had in mind a specific email, the other items returned could

provide useful entry points. An entry point is “a structure or cue that represents an

invitation to do something – to enter into a new venue or information space” (Kirsh,

2001). Examples of entry points are memos, annotations, new items in an inbox,

telephones, and piles of documents.

The actions of either following the link of these entry points or filtering out

categories gives us rich information to later analyze. Thus the larger amount of

information presented allows Robert to potentially find a miss-categorized item as well as

provide richer activity for analysis.

The events of objReceived are linked to the event of checkEmail so that we can

trace back the steps of when it was that Robert actually downloaded those specific lot of

email messages. If Robert has large gaps in between mail collection, he may mentally

represent the timestamp of each email to when he actually checked it rather than the

typical metadata of when the email was sent. Since the email contains an attachment, a

file item is created to represent it. Normally file creation events would be tagged with an

event for the file creation, but since the file is embedded in the email, Robert is not aware

of the file’s existence. Queries looking into files would take this into account, allowing

Robert to search the files that he created separate from files that are only attached to

email. Should Robert actually create the file, the system would create a separate entry for

that file. This is necessary because the attachment is embedded into the email, which a

saved version is not. However, a link between the saved version and the email version

would be created allowing Robert to trace the history of the saved version. Furthermore,

once the archive is uncompressed, its contents would be traceable back to the original

email through a link to the archive. To make sure this relationship is preserved, the entry

for the saved archive would never be deleted even if Robert deleted it off his computer.

This is natural as archives usually serve a temporary function.

Since Robert is a power-user, and was kind enough to explicitly set his own rules

of operation for the interpreter, we can classify the domain of the received email. The

interpreter would see that azinman@ucsd.edu is an unknown person who is filtered out

by any of the email client’s rules, leading to the conclusion that this email is bug report.

Robert had previously taken the time to create domains and links allowing the ad hoc

category “Bug Report” to be linked to this email. Future queries can look in this domain

for such files.

The basic sequences of events for emails received are typically similar. In the

case of the LKML mailing list, emails received would be attached to an entry under

person that represents the LKML list (the isGroup attribute would be set to true). The

reason we do not mark the To as Robert is the email was not specifically sent to Robert.

This is a much more accurate representation of the email than either disregarding the true

author and setting it to LKML or creating two entries for the same email. Furthermore,

Robert can query emails according to the LKML membership, individual authors, or

authors under the LKML in an intuitive manner.

Not all usages of email are straightforward. Robert’s company is using a web-

based intranet developed at the Interactive Cognition Lab. Discussions can occur on

almost any object in the intranet via email, web, or both. The ontology adapted to fit this

situation with little modification allowing Robert to track an entire thread through web

forms and email. Discussion using standard email would be handled similarly as noted

above assuming the relay does not strip the automatically generated headers which

reference other messages. Message ID headers, however, do not account for web based

posts which are forwarded to the appropriate recipients via email. The event interpreter

would need to adapt the proprietary references embedded in the emails from the relay

which handles web and standard email dialog. Once this is the basis for thread creation,

we can attribute Robert’s web posting to the current thread. Robert clicks on the

provided link in the email to go to the web based form. This URL contains the unique

tracking identifier to the current thread. When Robert posts his data, it is first saved in

the entry for the URL. It is then possible to create a link of type thread between the URL

entry and the entry he chose to reply to.

Having to create specialized event interpreting is a major limitation of the

component. All proprietary and nonstandard practices would need to be explicitly coded

in order capture the correct activity. Fortunately, one of the strengths of modularizing the

ontology is that it does not need to be heavily modified to reflect such changes.

Reasoning

Let’s take a closer look at our scenario. Most modern email clients have in the

headers a unique message id that allows email threads to be accurately compiled. My

ontology supports this by creating a link between email in a thread using the appropriate

parent and child relationship. Unfortunately this can create a non-trivial problem: how

far do we traverse relationship trees in our searches? Suppose that an email outlining a

problem originates in the LKML. Many emails are exchanged about this topic,

generating a large thread. This problem leads to other topics, and because most people

tend to hit Reply for simplicity, a slightly unrelated topic continues on the original thread.

Someone finally comes up with an idea for a solution to the tangent which Robert

forwards to his co-worker. His co-worker finally replies with a patch to a different

problem which the tangent prompted. Not being immediately relevant, Robert gladly

downloads the file for later use. Two weeks later, Robert sees the file but cannot

remember what the ill-named file is. He starts up his GUI manager and queries the

database to find the source of the file. If we always relied on message-ids then that file

would have a link to the original LKML thread, even though semantically it shouldn’t.

Figure 4: Outlining the source problem

To make matters worse, Robert could have stored mentally and possibly want any part of

the chain. How are we to know what return when Robert looks for the source of the

document? This is the major problem of scope. We could ignore the problem and simply

return everything that is linked to the file. After all, who are we to decide which results

are relevant? However if the thread is exceptionally large, this could return too many

results. Until we can read minds, it is necessary to have strict definitions in L2. Strict

definitions also necessary to create the algorithm that answer the question. With more

usage data in future work we can adjust the definitions to provide answers informed by

user-center design. For now I have defined source using the recursive algorithm for files

only listed in Appendix A. The algorithm would stop at the forward. This distinction

was chosen because when something is forwarded it goes outside of the mailing list,

which in many cases changes the semantics.

There are limitations, however. Besides the need to update the definition for new

programs and their relations, certain events would not get properly captured. For

example, in the MS SQL Enterprise Manager I can copy the contents of a remote

database onto my machine. The file that would be created contains the entire database

without separating its actual content into their appropriate function types. Since this file

is behind the scenes, its creation bares no significance to the user. However if we were to

monitor without any intelligence when an application creates a file, we would note the

file creation which the user is completely ignorant of. Furthermore, when save a local

version of a stored procedure from the copied database, there is no linkage to the original

remote script. In order to create the meaningful link, we would need to have our event

interpreter understand the different types of actions within Enterprise Manager to a high

degree. Therefore the system needs to have its event interpretations hand-crafted for each

type of application to make sure significant events are processed appropriately.

Furthermore, this example demonstrates that competently automated ontological learning

could not occur as the computer has no way of understanding which events are

significant. With understanding context such a high priority for correct annotation of

events, it is necessary to have an expert system base over a purely Tabula Rosa

connectionist system.

Even though the reasoning engine will never be fully complete, it remains an

essential piece of the puzzle that needs substantially more work to empower the

visualization tools. However, the original goals of implementing a large L1 and limited

L2 have been met. The current L2 has focused on providing useful strict definitions for

baseline queries. Since we cannot predict what queries will actually get used, future

work is targeted at focusing on fuzzy inferences of categorizing activity to allow for

things such as predicting what is related to project X.

Visualization

Initial work towards a GUI manager was performed using Java and Multivalent.

Multivalent is a Java framework which creates a browser capable of rendering standard

text, HTML pages, and PDFs. Additionally Multivalent supports direct annotation on

documents it renders: an event and data the system could record and incorporate.

Figure 5: Prototype of metaViz

metaViz, the GUI manager, is very limited in its usable functionality. Unfortunately

frameworks for GUI programming such as Swing are very time consuming to build

interfaces, let alone incorporate function. Most of the system was tested by creating SQL

queries by hand to test the stored procedures and views. metaViz remains a major project

to work on for the future, but its specification has already been established.

metaViz has to find a balance between ease of use and power. By creating direct

SQL queries of arbitrary size, almost any type of relationship can be assessed. This leads

to the question: how can we let the user query any type of relationship they wish to assess

with minimal cost? This has been attempted to be solved using several key features:

iterative querying, play lists, and arbitrary restrictions on L1 and L2.

Iterative querying refers to instantly displaying the query as it is entered. As soon

as the user has selected a major category of what they are trying to find, the results

section would fill up with all possible answers. Typically this will be a huge list, but as

the user proceeds it allows for viewing of how the search space is being restricted.

Furthermore, it allows for entry points to potentially be explored that might otherwise be

left out. Apple has a simple but effective iterative querying mechanism on its iTunes

jukebox software. A search box shown above the entire music library allows for the user

to search all metadata for a particular string. With each letter, the library reduces its

contents to reflect the query.

Play lists refers to a HCI concept which Apple in particular is using heavily in its

software lately. metaViz uses this concept as a way to store arbitrary data in an ad hoc

structure which the user can access at any time. The play list may contain an actual query

which would be rendered live with every access. Play lists could also contain collections

of items such as objects and events. This leads to a successful method of capturing

personal metadata in pure way which reflects the ontology, which is very significant for

the goals of the system. Additionally, play lists can be temporary or permanent between

sessions allowing users to have a workspace to explore their environment. Play lists can

also be used in searches where they become the master set which is searched, one of the

type of restrictions that may be placed.

In order to express a query, the user needs to be able to put restrictions on the

results that are returned. Possible restrictions could include directly accessing attributes

of the ontology such as “file created after 2/03/02” using L1 or access the results of L2.

Due to the nature of L2, it can be difficult to have the restrictions the user intends reflect

what is actually restricted. For example, when attempting to find the source of a

document, many different items could be returned as in our scenario. A possible solution

is to not allow for L2 queries which return more than one entry. In order to answer the

query the user would need to use successive queries through play lists. Unfortunately

this may not be natural, resulting in the need for user surveys to inform better design.

Lastly metaViz needs to support spatial querying. The system tracks the 2D

locations of files as they move across windowing operating environments. Spatial cues

are very powerful in helping a user answer a query, especially because people tend to

cluster their desktops in ad hoc categories according to various functions.

DISCUSSION

While its nice that Robert has a simple, well defined environment, most users do

not. How can we cope with the chaotic nature of email, attaching the correct

corresponding domain to objects in an ad hoc fashion? Is it possible to analyze activity in

a way that auto-magically produces correct ad hoc groups and categories?

It is clear that each user has different demands and uses of their environment. I

have attempted to create an ontology which generalizes any user’s environment for much

of their core activity. However, several major problems that will always plague the

system.

There is the problem of scope: it is difficult to know where to stop following links

to get our answer. While to the computer it all may seem relevant, the user really wants a

particular point in search space. This can be tackled by setting arbitrary thresholds as

well as strict definitions of queries. A much better way is creating visualization software

which minimizes the cost of wadding through large sets of results as well as hijacking a

real brain in navigating through search space.

We have the problem of semantics in natural language queries, where we need

strict definitions that can handle many different contexts of problems. This can be

approximated by using a small vocabulary (L1 and L2) to search instead of pure natural

language queries. Yet using a restricted vocabulary only partially addresses the issue of

context. If we could accurately segment types of usage such as the project being worked

on or web browsing, we would be able to provide better results by trimming what we

know the user isn’t looking for. In order to understand context we need better theory on

the underlying cognitive functions of personal metadata as well as office ecologies.

All is not lost. The World Wide Web and its demand for better search tools has

prompted much research into the area of text categorization. Work by Wang among

many others have shown that algorithms can exist which meaningfully classify sets of

data. My ontology supports automated classification through adHocGroups marked

machine generated. Their categories could appear as restrictions or play lists which to

base queries off. The system can significantly benefit when metaViz can provide an

interface to correct misclassifications, link classifiers to domains, or manual creation of

categories. Most importantly, the current ontology and descriptive language provides a

large interface to search metadata that would not be possible any other way. The system

captures and annotates many types of activity, providing the ability to trace many objects

throughout their life history imposed by the user’s projected personal metadata.

FUTURE WORK

This project has outlined a clear strategy for understanding and supporting office

activity. However, it is dependent on countless more hours of follow up research for the

envisioned system to be truly realized. The main component needed to propel future

research is capturing and analyzing natural strategies in the office ecology. We need a

clear answer on what kinds of ad hoc categories exist in the digital domain, and how they

extend or differ from their physical counterparts. It is necessary to know how people

cope with overload of files, and what strategies are used for spring cleaning. Are there

varying degrees of organization? How do people decide where to place intermittent files,

and can we predict temporal relationships using available data?

Even without a more complete theory, more of the system can and will be

implemented. The first task is to create an application which can effectively monitor and

interpret digital activity instead of hand-coding transcripts. Working on an event

interpreter will impact the ontology, changing to accommodate unforeseen relationships

and expanding to better represent the environment. Lastly, metaViz needs to be fully

implemented at least rudimentarily, in addition to exploration of better methods of

visualization.

Current work involves extending the reasoning engine in an attempt to cluster

files according to activity. Temporal relationships are extremely important in

determining context as well as window management. For example, constant switching

between two applications or positioning of windows such that two objects are visible at

the same time is very meaningful personal metadata. It is hypothesized that windows of

time can be analyzed according to activity of files (how often a file is accessed, etc) in

conjunction with the activity of applications to provide analogous to physical clustering

techniques such as piling or stacking. By assigning activity as a relative value, irrelevant

objects may be accurately discounted. It is this type of analysis that provides the user

with powerful tools for search as well as the cognitive researcher methods of

understanding how people work.

APPENDIX A.

Pseudo-code for finding the source

FUNCTION findSource(ourFile : = file to search)
// initialize the data structure we are returning
initialize(toReturn)

// check to see if this file belongs to a user-generated
// ad hoc group.
IF EXISTS(link WHERE child = ourFile

parent = adHocGroup
AND
WHERE adHocGroup.machineGenerated IS

 FALSE
)

THEN
toReturn := toReturn + adHocGroup

END IF

// check to see if this is an uncompressed file
IF EXISTS(link WHERE child = ourFile

parentType = file
type = embed

AND
WHERE parent.isCompressed IS TRUE

)
THEN

toReturn := toReturn + link.parent
END IF

// check to see if this file is embedded in anything
// we don’t want to keep on searching the source of
// what its embedded in because we don’t know how
// significant that may be, unless its an email
IF EXISTS(link WHERE child = ourFile

type = embed
AND
WHERE IF (parentType = file THEN

 parent.isCompressed IS FALSE
)

)
THEN

toReturn := toReturn + link.parent
IF (parent.Type = email)
THEN

toReturn := toReturn+scourEmails(link.parent, 0)

END IF
END IF

// see if this file is another version of an existing
// file, return it and its source
otherVersion := TRUE
IF EXISTS (link WHERE child = ourFile

 parentType = file
 type = version

)
THEN

toReturn := toReturn + link.parent
toReturn := toReturn + findSource(link.parent)
otherVersion := TRUE

END IF

// look at what application created to understand what we
// should be looking for

appCreator := ourFile.appCreator
IF EXISTS (appCategory WHERE

 appCategory.appType=appCreator.type
)

THEN
category := appCategory

END IF

IF (category IS NOT NULL AND category = “Create Locally”)
THEN

// we know our file comes from a local source, so
// we don’t need to try and follow links to get to
// a remote object.

// if there is a parent version then search only that
IF (otherVersion IS FALSE)

IF EXISTS (event WHERE type = objCreated
 parentType = application
 child = ourFile

)
THEN

toReturn := toReturn + event
END IF

END IF
ELSE

// either it comes from a remote source or we don’t
// know the source... either way we need application
// specific searches.

// check to see if it came from an instant message
IF (appCreator.type = “Instant Message”)

THEN
// find the conversation that it originated from
IF EXISTS (link WHERE child = ourFile

 parentType = conversation
)

THEN
toReturn := toReturn + link.parent

END IF
END IF

// we do not need to check to see if it was from
// and email here. this is because we already have
// looked for other versions recursively, and if they
// exist, then it will eventually find the embedded
// version in the source email, which is handled above

// if we got this from the web, it could potentially
// result from a link in an email or standalone
IF (appCreator.type = “Web Browser”)
THEN

// we need to return the web page it originated
// from as well as any query which led to it.
IF EXISTS (link WHERE child = ourFile

 parentType = URL
 type = downloadedFrom

 AND
 WHERE URL.isWebPage IS TRUE

)
THEN

webpage := link.parent
toReturn := toReturn + webpage
toReturn := toReturn+findQuery(webpage)

// check to see if this web page was result
// of an email link
IF EXISTS (link WHERE child = webpage

 parentType = email
)

THEN
toReturn := scourEmail(link.parent, 0)

END IF
END IF

END IF

// if we got it from an ftp session, return the URL
// to the remote file
IF (appCreator.type = “FTP Client”)
THEN

IF EXISTS (link WHERE child = ourFile
 parentType = URL
 type = downloadedFrom

 AND

 WHERE URL.isFTP IS TRUE
)

THEN
toReturn := toReturn + link.parent

END IF
END IF

END IF

RETURN toReturn
END FUNCTION

FUNCTION scourEmails(ourEmail := email to search, i:=iteration)
// we only return up to 20 links up in the thread to
// prevent too much irrelevant information. since its
// a variable, we can later adjust this
IF (i = MAX_EMAIL_ITERATIONS)
THEN

RETURN NULL
END IF

initialize(toReturn)
toReturn := ourEmail

// check to see if this current email was forwarded..if so
// stop there
IF EXISTS (event WHERE type = objForward

 child = ourEmail
 parentType = email

)
THEN

toReturn := toReturn + event.parent
RETURN toReturn

END IF

// otherwise check to see if this is a member of a thread
IF EXISTS (link WHERE child = ourEmail

 parentType = email
 type = thread

)
THEN

toReturn := toReturn + scourEmail(link.parent, i + 1)
END IF

RETURN toReturn
END FUNCTION

FUNCTION findQuery(ourURL := web page to search)
// first see if a query has been tagged to this web page
// if so, return it. otherwise keep on going up in the
// history to find any other query should it exist.

IF EXISTS (link WHERE child = ourURL

 type = resultOfQuery
 parentType = query

)
THEN

RETURN link.parent
ELSE

IF EXISTS (link WHERE child = ourURL
 parentType = URL
 type = href

)
THEN

RETURN findQuery(link.parent)
ELSE

RETURN NULL
END IF

END IF
END FUNCTION

APPENDIX B.

List of questions that inspired part of the ontological design:

Where are my documents that I worked on with Robert

Where are the files Robert gave me?

What did I work on in this month?

What were the search queries that produced the PDFs that ended up in the pervious
query?

What emails contained those keywords?

What document contains these words … in this Boolean query … ?

Who were the authors that wrote the papers that contains these words …

What are all the web pages that I pulled these images from?

Where are the files that have been written from an encryption type application?

Who has manipulated this file … ?

What other documents has this person … manipulated in this time frame … ?

Of those in the previous query, which are in this project … as defined by this play list …
?

Where’s my outline on this subject … ?

What functions deal with the aspect for text output in this source code? (NOT
POSSIBLE)

Where’s this file from?

What has been in this location … on my desk with this time frame … ?

Who has modified or accessed this document … ?

What is marked to do?

What email has resulted in the creation of a word document? (NOT POSSIBLE since we
cannot predict intentions without a direct link)

What email has come from John?

What is related to this file … ?

What corresponds to the following keywords … ?

Where did this document come from? (Question is attempting to figure out if it
originated in the physical or digital domain)

Where are all the copies or versions of this document … ?

What are all the files I accessed in this time span … ?

What attachments haven’t I opened?

Where are all my notes on this book?

What files resulted from the google search using this query … ?

Who’s documents are in this directory … ?

REFERENCES

Al-Kofahi, K. Tyrrell, A. Vachher, A. Travers, T. Jackson, P. (2001) Combining
multiple classifiers for text categorization. Proceedings from the International
Conference on Information and Knowledge Management, Proceedings 2001. pp 97-104.

Avello, D. Gutierrez, D. (2002) The cooperative web: A complement to the semantic
web. Proceedings from IEEE Computer Society's International Computer Software and
Applications Conference 2002. pp 179-183.

Barsalou, L. Solomon, K.O. (2001). Representing properties locally. Cognitive
Psychology, 43, pp. 129-169

Barsalou, L. (1983). Ad hoc categories. Memory & Cognition, vol 11 (3), pp. 211-227.

Bruggemann, B., Holz, K., Molkenthin, F. (2000) Semantic documentation in
engineering - Content retrieval by arbitrary information. Computing in Civil and
Building Engineering. v 2 2000. pp 828-835.

Fensel, D. Van Harmelen, F. Horrocks, I. McGuinness, D L. Patel-Schneider, P F. (2001)
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems & Their
Applications. v 16 n 2 March/April 2001. pp 38-45

Grumbach, S. Tininini, L. (2000) Automatic aggregation using explicit metadata.
Scientific and Statistical Database Management - Proceedings of the International
Working Conference 2000. IEEE, Los Alamitos, CA, USA.. pp 85-94.

Jackendoff, R. (1987) Consciousness & the Computational Mind. MIT Press, pp. 193-
212.

Kirsh, D. (2001). The Context of Work, Human Computer Interaction, (forthcoming)

Kirsh, D. (1995). The Intelligent Use of Space. Artificial Intelligence, Vol. 73, Number
1-2, pp. 31-68

Maedche, Alexander D. (2002) Ontology learning for the semantic Web. Kluwer
Academic Publishers, Boston.

Marchand, E. Chaumette, F. (2002) Virtual visual servoing: A framework for real-time
augmented reality. Computer Graphics Forum. v 21 n 3 September 2002. pp 289-297.

McCloskey, M. Glucksberg, S. (1978). Natural categories: Well defined or fuzzy sets?
Memory & Cognition, vol 6. (4), pp. 462-472.

Mennis, J.L. (2000) Human cognition as a foundation for GIS database representation. In:
Graduate Student Research Papers, UCGIS Summer Assembly, June 21-24, 2000,
Welches, OR. Leesburg, VA: University Consortium for Geographic Information
Science, pp. 4.1-4.17.

Mennis, J.L., Peuquet, D.J., and Qian, L. (2000) A conceptual framework for
incorporating cognitive principles into geographical database representation. International
Journal of Geographical Information Science, 14(6). pp. 501-520.

Rais-Ghasem, M. Corriveau, J.P. (1996). Beyond Concept Recognition. Ottawa, Ont.,
Canada.

Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs, H.(1998). The Office of the
Future : A Unified Approach to Image-Based Modeling and Spatially Immersive
Displays. ACM SIGGRAPH, Orlando FL.

Raskar, R., Welch, G., Cutts, Stuerzlinger, W. (1998). Efficient image generation for
multiprojector and multisurface display surfaces". Ninth EuroGraphics Rendering
Workshop, June 1998 (Appeared in Drettakis, G., Max, N. (eds.), Rendering Techniques
'98. Proceedings of the Eurographics Workshop in Vienna, Austria.)

Savage-Rumbaugh, E.S et al. (1986) Spontaneous symbol acquisition and communicative
use by pygmy chimpanzees (Pan paniscus). Journal of Experimental Psychology:
General. vol 115. pp. 211-235.

Wang, Y., Tan, C., Lee, C. (2002) The Use of Bigrams to Enhance Text Categorization.

Whittaker, S. Hirschberg, J. (2001). The character, value and management of personal
paper archives. AMC Transactions of Computer Human Interaction, vol 8, pp. 150-170.

Wilensky, Robert (2001). The Multivalent Browser: A Platform for New Ideas.
Proceedings of Document Engineering 2001. Atlanta, Georgia.

