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Abstract:

This article suggests a new type of initial configuration to use for gradiésicent
multidimensional scaling algorithms such as the Kruskal-Shepard algoritbimg &binary
hierarchical tree of the points to scale, one can expand that tree in the foegalstpging with
the root and repeatedly replacing each node by its two successors; at easioax@a uses
the gradient descent again to reshape the configuration. Compared to applying gestient
to the result of classical scaling, tree expansion yields similasle¥skress, but renders better

the grouping of points belonging to similar clusters.
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Introduction

When trying to visualize the proximity structure of a high dimensional patterrireaneently
has to choose between clustering into a hierarchical tree, or scaling down to tvee or thr
dimensions. Conventional wisdom considers that multi-dimensional scaling (8ID&)d at
representing the big picture, whereas hierarchical clustering (HC) bdod details more
accurately (Kruskal 1977; Arabie, Hubert et al. 1996). Ideally, one would want a low-
dimensional configuration rendering both the global and local properties; stidlotha
example, if one drew between the final points a hierarchical tree obtainethimriginal
data, this tree would appear simple and related branches would stay next to eachiaghe

paper suggests a method that finds such tree-friendly scaling configsration

There is a second situation where existing strategies come short: iéximteeextraneous
information in addition to the dissimilarities. For example, the points can betegtfeam
known different populations, such as male and female participants in an experiment, or
different political parties in an opinion poll. The different clusters may or nat thee same
spatial distribution; yet of the many stress-equivalent ways of repirggdme data, some must
better than others at representing this extraneous information. Likelipgeittés to group
together points belonging to the same cluster. In some cases, the preexssiigation may
be hierarchical. For example, a library can display a 2-dimensional map af aoplicciences

by scaling similarities between sciences; in which case it is ianuoxt respect the library’s
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call number system along with the similarity structure. Until now, bothictdssd non-
metric scaling are ill-equipped to represent jointly the similaritycstire and extraneous

information. In contrast, the method suggested here can use such extraneousiamforma

Before we introduce our method, let us review the shortcomings of current VD& ss.

Consider a set of data points)(&f known dissimilaritiesq;;) that has to be visualized in two
dimensions. When the dissimilarities should approximate directly actualaisthetween

points, the MDS isnetric, and can be done in two ways: by classical MDS, in which the points
are projected orthogonally in the subspace encoding a maximum of variance @nolung
Householder 1938; Torgerson 1952; Cox and Cox 2001), or by a metric gradient descent, trying
to minimize the sum of residuals (the squared differences between distances and the
corresponding dissimilarities). When the mapping between dissimilaritiesstadagis is
unknown—for example obscured by an unknown psychometric function—one can rely only on
theorder of the dissimilarities, and scaling is achieved by repeating a gradsagnderying to
minimize the sum of residuals between distances and the same distances naihotediced

to the dissimilarities (Shepard 1962; Shepard 1962; Kruskal 1964; Kruskal 1964). In the
following paragraphs we will examine in turn why classical, metric MidSepresents smaller
inter-point distances, and how gradient descent algorithms, including non-metng,scali

depend on initial configurations.
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Why existing scaling strategies deal poorly with local structure:

1. In the case of classical multi-dimensional scaling (CMDS), the ©i;)’s are taken to represent
Euclidian distances, and;jfean be rendered after a Young-Torgerson reduction, by projecting
the points in two dimensions for graphing (Young and Householder 1938; Torgerson 1952; Cox
and Cox 2001). However, CMDS is not the best least squares rendering of distaiscesly it i

the best rendering by orthogonal projection. In fact the sum of residuals (sum efisguar

over inter-point distances) computed for a CMDS result is always high, in pacdeeCMDS,

like all orthogonal projections, systematically decreases distancesollbvarig example

(Figure 1) shows where problems can lie:
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Figure 1: Classic MDS will project B and C onto the sam@pat intersection of dotted axes, but minimalste

square error for the distances within a one-dinmeraiconfiguration is for B” and C”, whose centeit ¢g from

A, and whose distanceyd- = ds¢/3.
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Figure 1 illustrates two problems:
1. Because it lies parallel to an eigenvector pruned by the CMDS, the distaneem&
and C has been ignored. In contrast, the distance between A and the other points is
almost conserved, because it is almost collinear to the eigenvector preserved by the
CMDS.
2. The projection ignores the arc, so that even though B and C are both at the same

distance from A, their projection gets closer than that distance.

A first step in estimating the true efficiency of CMDS is to dilateltésy distances by a factor
p? = Zj [(Bij.dj)/(di,-z)]. This factor makes up for dividing the average arc by its cosine. Even
then the sum of residuals can easily lag by 20% behind that obtained after a giestent

adjustment (see the results section and Figure 5).

Still, CMDS reduces the original distances unequally, depending on which eigeresits
most of a distance. For this reason, CMDS can mistreat gravely the detadalafttucture
when these details lie in dimensions that are suppressed. When the algorithnitdéuag¢gw
dimensional underlying patterns, it is very likely that many local petteill be entirely
misrepresented because of this CMDS shortcoming. So, if one wants to renderrai®kycas
possible the set of between-point distances, CMDS projection must be followedauyemgr

descent to minimize the sum of square errors.
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However, even metric gradient descent starting from the CMDS configucatiofail to

properly restitute local sub-patterns, because when the initial projectios bréide a 2-D
sub-pattern points that should lie outside, the gradient descent is unable to move them outside
and the “pressure” caused by their presence distorts local details. Thistiated below in

Figure 2, where CMDS superimposes two clusters that should be kept separatealiamnd gr

descent as a result explodes one of the clusters into a ring around the other one.
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Excerp of Cereal Data Classical MDS

Excerp of Cereal data
Gradient descent from Classical MDS

++ Classic Cereals
i Classic Cereals (Corn Hakes,
S (Corn Flakes, + "’*_"_ +H Cheerios...)
" ++ Cheerios...) + +
. .
+ + Puffed and
Agglomerated
+ Puffed and + (Shredded
Agglomerated
(Shredded Wheat, Puffed
Wheat, Puffed Rice...)
Rice...)

Figure 2: Detail of MDS made on the ASA Cereal data setio Dut of seven types of cereals are projectecpn t

of each other by CMDS. Applying gradient desceatsgns this particular feature of the configuratimecause

the central repulsion creates a crown of local main which the “classic cereal” points settle.
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2. In the non-metric case, the §;) are on an ordinal rather than a ratio scale, in which case an
initial configuration is modified to optimize the rank order of the resultingriis (¢). The
Shepard-Kruskal algorithm (Shepard 1962; Shepard 1962; Kruskal 1964; Kruskal 1964)
establishes for existing distanceg)(d set of target distancesfdthat are in the same order as
the @jj)’'s—when d is already in order, gl'is set to equaljdand when sequences gf'd are in
disarray, all corresponding;d’s are set to the average of thegésd The target distances are
then used as dissimilarities in a metric gradient descent that modifiestiddeconfiguration to
minimize Stress (the normalized sum of residug(d;-d’;)?/d;* ). Because this metric
gradient descent can disturb the rank order again, the process must be iteratbd, unti
configuration is stable.

Because gradient descent adjusts an initial configuration to a local minitauesult depends
on this initial configuration. To obtain a good final solution, one possible strategyys to t
several random initial configurations and keep the most favorable. While this methedrin t
can explore the entire space of solutions, it is computationally costly. Inceradew

attempts will generally yield at least one solution with acceptablessthesecond strategy is to
use the result of CMDS as a starting configuration; this can be done aftenggpWDS

either on the dissimilarities themselves (treating them as distances) pseudo-distances
reconstructed to be consistent with the rank order of dissimilarities (LirgaeRoskam

1973). This latter strategy is a one-shot attempt, computationally effectifiadutit can

occasionally fail, as illustrated in Figure 3, and cannot be improved gracefutigrieasing
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computational power. In conclusion, neither random configurations nor a CMDS-produced

configuration are ideal starting points for the Kruskal-Shepard non-me{s. M
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Figure 3: Local minima in a metric energy landscape andifaiof CMDS-seeded gradient descent. When scaling
the five points (4, 4, 0), (4,-4,0), (-4,4,0), ¢40) and (1,1,7), CMDS projects the latter in piene Z=0, onto the
point (1,1,0) shown in grey. This graph shows@ 2ection of a 10-variable function: the sum ofdaeals

landscape, by fixing the coordinates of the 4 goihat were already in the plane (“the base”) dmiving the

sum of residuals for different locations of tHeint. For moving the grey point only, there atdeast five local
minima: four located outside the base and one apbutl, 0). In fact, this latter point is whegeadient descent

takes the grey point, but it is not the absoluteimium.
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The tree-expansion strategy:

In summary, gradient descent appears as the best method to render theadisssmniiut on

one hand it requires a good starting configuration, and on the other hand it does not take in
consideration the supplementary information that can be given by a hierandecal\te

suggest solving these two problems together by using that supplementary tiviotma
construct a starting configuration which gradient descent will optimitteregard to stress. In
the process of arranging the pointg (P two dimensions, the dissimilarity structure is
unavoidably impoverished — but it can be impoverished less, by keeping in the final
configuration some of the information obtained by a clustering algorithnpendently of the

scaling algorithm.

In order to jointly minimize stress and render the cluster structure, we propagely gradient
descent (or Kruskal-Shepard) repeatedly to a growing configuration, abtairexpanding the
hierarchical tree. This is illustrated by Figure 4 in which the hier@attree and successive
configurations are shown bide by side. Prior to using this algorithm, one needsitindatity
matrix at all stages of expansion. If the tree has been constructed frdirNaa&jorithm these
dissimilarities are already available, otherwise they have to bputethin a one-sweep

forward pass. Given these dissimilarities, the algorithm is to:



Spatially Expanding Hierarchical Trees 13

1. Position a starting configuration:

a. Take a section of the hierarchical tree contaifdrg. points where D is the final dimension
(e.g., 3 points for a planar MDS). This is tuerent section of the tree.

b. Using the dissimilarities between these pointszgllem in space exactly using CMDS.

c. Test that the resulting configuration defines a@etgrof dimension D. If yes, this is the starting
configuration. If no, use asirrent section a section with one more point (the highest numbered

tree node in the current section is replaced binitsoffspring), and go to step b.

2. Expand the tree:

a. Inthecurrent section, select the highest tree node, and replace jitigice, by its offspring;
b. Adjust the resulting pattern by gradient descenKfuiskal-Shepard) to a “decent” accuracy.
i. One wants to adjust the location of all existingnp@only to a precision, just more
accurate than the movements we can expect to happba next stage of the
algorithm. The idea is to avoid finessing the @ngence past an accuracy that will
be undone anyway by the next split. Becanssust be computed before the
convergence, on estimates of the next positions nécessarily approximate. After
testing several heuristics, we have settled fantpk = (1/16).6p,pn2/max(5ij)2. The
gradient descent is stopped by a test on thevelatbvement: when for all points
their movement divided by the average distance éetvpoints is smaller than
ii. In applying gradient descent, one has the choitaki® into account the mass of the
points or not:
1. Points are considered of equal mass, SS}E(:dij—Sij)z
2. Heavier points move less, SSEFmm; (d;-5;)
The results presented use the weighted algoritmber 2.

c. Return to step a. until all point in the currenhfiguration represent terminal nodes.

3. Make a final adjustment down to the desired accuracy.
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Figure 4. MDS by Tree
expansion.

In the left column, the
SAHN tree of Shepard’s
colors: the 9 circles at the
bottom are the colors used
experimentally; higher
level tree nodes received
interpolated RGB values.
The top of the tree (top
node and its immediate
offspring) is truncated.

In the right column,
successive 2-D
configurations obtained
by tree expansion. The 3-
point configuration is an
exact CMDS scaling.
Subsequent
configurations (4 to 9
points) are obtained by
Kruskal-Shepard, using as
initial condition the
previous configuration in
which one point is
replaced by its two
contributors. The point
chosen is the current
highest tree node, it will
be replaced by the two
tree nodes that it consists
of, and those two nodes
start with their parent’s
location — it is the
Kruskal-Shepard
algorithm that pulls them
apart.

On both sides, a blue
arrow points at the node
about to be split. In the
right panel, as the pattern
is expanded from 3 points
to the full 9 points, we
see that some expansions
require more
reorganization (e.g., from
6 to 7 points) but there is
no reversal of relative
positions.
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The algorithm allows the initial configuration to grow from the hierarchical ozg#ioh of the
rendered pattern. Points spawned by the same node stay near that startirggansofar as
dissimilarities allow they will remain in the same region throughout tparekng process.
Thus, points that should be clustered together are not initially separatedaulyesmigr
“mountain pass”, as they often would be in a random initial configuration. This higorit
shares with others the benefits of gradient descent, but with respect to tlogptmeam issue it
improves over other methods by finding a local optimum that respects as much lale plossi

hierarchical tree.

Simulations

The goal of simulations was to validate the algorithm and start estimiatistgengths and
weaknesses. Too many variables were involved to chart the complete problenthsptree;
most important that were not considered were variations in the type of classifitree, and in
configuration dimension. The variables that were varied involve the number of points and
different conditions of grouping. We present side-by-side results from the getdient

descent and from non-metric, Kruskal-Shepard gradient descent.
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Simulation Method:

N patterns of P points were randomly generatd®‘irl: either all from the same population,

with each coordinate from a random Gaussian distribution of mean zero and variance one, or
from C different populations, deviating with variance one from cluster centroids¢hers

drawn randomly with a different variance (the parameter “cluste&f§caRandom deviates

were computed using the routine “gasdev()” from (Press, Teukolsky et al. 12/

generation, each pattern was centered on zero. For the non-metric simulaéahstances;d
these were transformed into dissimilaritdggy the following function:

0= dj + .49* sin(2*d) + noise*gasdev() ; in which noise=0.1 unless reported otherwise.

Each pattern was then organized as a binary ordered hierarchical treecbytiioid-based
SAHN algorithm (Gordon 1996), and the tree was used for our expansion algorithm. In the
non-metric case, we built the SAHN tree from the dissimilarities. uBecthe dissimilarities
were noised distances, they no longer conformed to the triangular inequali&yresdt, when
using constructing the SAHN tree directly from dissimilarities, negatquare dissimilarities
would occasionally appear. One way to solve this would be to use some of the additive
constant methods developed prior to non-metric scaling. However we found it moenet

simply adjust the computed dissimilarity during the SAHN algorithm byaheing function:

' =5+ 8  inwhich§" is the positive part df.
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When testing for the ability to render known clusters, the tree was computtea forced
compliance to the original clusters so that each of the different original gopslabrresponds
exactly to a sub-tree. This was done during the agglomeration phase of SAHN byghio®s

two closest points under the condition that they belonged to the same cluster, up to step (N-C
of agglomeration, at which stage nodes were in one-to-one correspondence to the original
clusters, and the agglomeration could be finished without constraint. This type ef tree i

hereafter called “cluster-compliant”, or simply “compliant” tree.

In the metric simulations the gradient descent was made on the sum of reSi8&ais;; (d;-
Sij)z. In the non-metric simulations, following Kruskal, the gradient descent was made on the
stress computed with distances monotonically regressed to dissimilarities
Stress = & mimy(dy-d’)?) / (= mmy(d)?)
in which (dj) are the distances regressed monotonically to the similarities and
m; is the mass of node |.
For the metric program, we did not adopt such a complicated step length computation as
Kruskal's; instead we monitored 3 consecutive steps and decreased the step tieagghwere
increasing or oscillating, and increased it if they were decreasingsioolfiaconjunction with
this simpler procedure, and for computing time reasons, we automaticallyledncals for
which the convergence was too long for any one of the gradient descents. The upp&xsimit
arbitrarily set at 100*R| when a trial was cancelled its results were discarded for all methods

together. Quite possibly this pruning of difficult configurations has introduced alsasl
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however for N>10 very few trials were cancelled, and because we arengmpoetians rather
than means we do not believe that the results are much affected. For the nosimelaittons

we followed Kruskal's formula for the step length.

This data was then used to find fitting configurations by the following methods:
a. Classic Multi-Dimensional Scaling (CMDS).
b. CMDS rescaled by a dilatation or ratig [(Sij.dij)/(dijz)] (for minimal residuals).
c. CMDS plus dilatation followed by a gradient descent.
d. Expanding the SAHN-tree without considering mass.
e. Expanding the SAHN-tree, considering mass.
f. Expanding the compliant tree without considering mass.
g. Expanding the compliant tree, considering mass.
h. Doing gradient descent from circular initial conditions (all initial pointsa#gspaced
on a circle).

i. Doing gradient descent from random initial conditions.

Considering the mass during expansions had a very minor effect, so the Figures rgport onl
results from weighted expansion. Similarly, circular initial conditionsltesre almost

identical with random initial condition results. We will most often report onlyatierl Each
number reported is the median of 99 trials using independent random patterns. We also

recorded, but found no interest in reporting, the mean, and the lowest and highest 5%squantile



Spatially Expanding Hierarchical Trees 19

Simulation results:

Comparing Stress from different methods. Figure 5.
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(%) Stress - Metric MDS (%) Stress - Non-Metric MDS
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—&— CM DS with dilatation —&— CM DS with dilatation
—O— Gradient descent from CMDS —o—Kruskal-Shepard from CMDS
10 + - + —aA— Tree Expansion 10 +- -/ 4/--- —&—Tree Expansion
@* Gradient descent from random config. Kruskal-Shepard from random config.
points points
0 0 @
0 20 40 60 0 20 40 60|

Figure 5: Stress, in %, of configurations from different MB®thods.S= X (8ij'dij)2 % dijz. All points are

from the same population (C=1). When parameteyvaried (C>1, clusterscale from 0.0 to 4.0), thess
diminishes when clusters are better separated @gments when there are more clusters with the ssparation,

but the different methods stay in the same ratio.
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Rendering Contingent Data Structure: Figures6 and 7.

To test how good each MDS algorithm is at rendering accidental structureiagpeaata and
captured by a SAHN tree, we measured how well clusters defined by the $&dHate
separated in the final configuration. Using patternsZgbdints we adopt the N clusters
defined by sectioning the tree at the appropriate level. (Because theotips goints on the
basis of their observed distance, the clusters can contain more or less than;Nhayieie
only constrained to an average of N point per cluster.) The chosen measure of hingseell
clusters are separated in the configuration obtained by one of the scalinthiedgasithe
Fisher significance of the groups they define. l.e., from the coordinates of tte ipdhe final
configuration, an F-ratio can be computed, and from it a p-value. This p-valuesréfiect
probability that a random configuration would keep the clustered points as welleiogstthe
observed configuration does. The p-value is not a perfect measure, in partioytaovies
when the points that belong to the same cluster get closer to each other, regandles their
dissimilarity is. By over-gathering the points, one gets a betterye-althe expense of a
higher stress; notably, Classical Multi-Dimensional Scaling does jusb#ause it tends to
squash more strongly smaller dissimilarities, which happen to lie more often thie clusters
than between them. However, for solutions equivalent in stress, the p-values teslectvell

the clusters are separated.
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Rendering Structure - Metric MDS

Rendering Structure - Non-Metric MDS
0.001 ——— 0.1
© —&— CM DS with dilatation o
= —6— Gradient descent from CMDS =
g —aA— Tree Expansion g
o Gradient descent from random config. o
0.01 -

—&—CMDS with dilatation
—o—Kruskal-Shepard from CMDS

—A— Tree Expansion 5
1 Kruskal-Shepard from random config.
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

Clusters

Clusters

Figure 6: How well is contingent structure rendered? Thgs@hs plot p-value (the significance of the gingp
in function of the number N of clusters (for a tathN? points). When using metric scaling (gradient éeson
the dissimilarities), the accidental organizatiéfmomogeneous data (all points come from the samessian
distribution) is can be preserved by Tree Expandiohnot when other algorithms are used. Whemguson-

metric scaling, Tree Expansion still fares bettantother methods, but overall all methods fapreserve

structure.
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Non-Metric MDS - Cluster Scale =0.5 Non-Metric MDS - Cluster Scale =1.0
1.E18 1E-18
] YH+D © YH+D ‘
= —o—YH+D+GD 2 — 6 YH+D+G
> —a— KS Tree Expansion > —a— KS Tree Expansion
a KS Random IC o KS Random IC
1F12+--------- - — - E12 4+
1606 +-------------—-— - & 1IB06 +-------———- -~
a clusters @ clusters
1.E+00 + = . . . 1+ . . .
2 6 10 14 18 2 4 6 8 10

Figure 7: Rendering contingent structure of heterogeneotss dahe data is drawn from different populatipns
accidental structure is more pronounced and thalpevbecomes more significant. Here we show dréyrion-
metric MDS results (metric results are similarheTmore separated the population the easierdtget good final
separation from any kind of initial condition; howee tree expansion is always the best initial cboai When
the scale is only 0.5, good separation only appfearsumerous configurations (more than 100 pointjith very
heterogeneous data (clusters separated by mor@tieamandwidth), Classical MDS (in this case, igpipio
dissimilarities) can occasionally give the bestghse, not because it separates clusters bettebgoatise in the
same distance-squashing process that causes a iighss, CMDS brings points of the same clusteserito their
centroid. In all cases, Tree expansion gives gebptvalue than Kruskal-Shepard gradient deseent finy other

initial condition.
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Rendering pre-assigned clusters. Figure 8.

Sometimes the grouping of data points is known in advance from extraneous data. For
example, clustering could represent the value of a between-subject factoredlzseassigned.
In this case the tree-expansion algorithm must be used wattm@hiant tree, that is, a tree that
first organizes the data points inside clusters before it organizes therludtith such a tree,
expansion will first arrange spatially cluster centroids, then arrdreg@dividual points

making up these clusters.
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Rendering Pre-Assigned Clusters Rendering Pre-Assigned Clusters
Metric MDS, Cluster Scale = 0.5 Non-metric MDS, Cluster Scale 0.5
1.E03 1.E-07
CM DS with dilatation CM DS with dilatation K
g —o— Gradient descent from CMDS M g —o— Kruskal-Shepard from CMDS
? —aA— Compliant Tree expansion § —A— Tree Expansion
o Gradient Descent from random config. a Kruskal-Shepard from random config,
1.E-02
1.E-04
1.E-01
| 1.E01
b clusters P clusters
1.E+00 + ‘ T ‘ ‘ ‘ ‘
2 3 4 5 6 7 8 9 2 5 8 11 14

Figure 8: How well are pre-assigned clusters rendered?sd beaphs plot p-value (the significance of the
grouping) in function of the number N of clustefar @ total of N points). Here the pre-assigned clusters
correspond to different populations in the full-éimsional space, such that the centroids of theeckiare
distributed with 0.5 times the bandwidth used &irihute points inside clusters around their cedtrd he
clusters are therefore widely overlapping. Newdgks, both in the metric and the non-metric case,
Multidimensional scaling can render in two dimensidhe difference between populations. Expandieg t
compliant tree is of all gradient descents the raffgtient way to render the clusters (In factiertually
surpasses CMDS in spite of the p-value bias fofdtier, at 20 clusters — not shown; p-values forerthan 20
clusters could not be computed as they exceededbiligle float precision but the F statistic indéchthat
eventually gradient descent from CMDS also outperfosimple CMDS). If the clusters do not correspto
any difference in spatial repartition (Result nedwn) — Cluster Scale=0.0, corresponding to a h@mnogs
population with arbitrary labeling— all p-valuegatery poor (over .5) but compliant tree expanssahe best of

those bad solutions.
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Computational Cost: Figure9.

One of the worries one might have with the tree expansion method is about the casatoigep
the work of repeatedly organizing almost the same configuration. The @®dénted in

Figure 9 show that this worry is partly justified. For non-metric scalingettpansion is about
2.5 times as slow as doing Kruskal-Shepard only once, from the results of CMDS. Bhis doe
not take into account the lower order costs of building the tree for one algorithm, or of
diagonalizing the double-centered dissimilarity matrix for the otherithgaor For metric

scaling, tree expansion is actually the cheapest way. This result is eotuntese if one

thinks in terms of re-doing the work, but makes sense when considering that eachoexpansi

stage provides a starting configuration very close to the final configurfat that stage.
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cycles Metric MDS - Computing Cost cycles Non-Metric MDS - Computing Cost
1.E+07 1.E+07

1.E+06 - 1.E+06

1.E+05 - 1.E+05

1.E+04 - 1.E+04 1

1.E+03 4 —o— Gradient descent from CMDS LEHO3 —©S— Gradient descent from CMDS
—aA— Tree Expansion —aA— Tree Expansion
Gradient descent from random config. Gradient descent from random config.
1.E+02 points 1.6+02 points
0 20 40 60 0 20 40 60

Figure 9: Computational Cost. The cost is measured inch@giles (computing the contribution of one pair of
points to one coordinate of the gradient). Eveugh it is related to the implementation, this eyobunt allows

to compare the speed of convergence from différétidl conditions.
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Cost of doing better than Tree Expansion:

If the main focus is on the quality of the configuration obtained, it makes sense to ctheside
strategy of starting gradient descent repeatedly from many randaahgoitditions. One may
hope that through the force of sheer numbers, a solution will be found that simultaneously
lowers stress and renders well the original accidental structure.sTlabhel 2 present very
contrasting results, denying this hope for metric scaling, but keeping the doobopen

metric scaling. Each column presents data from 99 configurations for eactcbfresults

from 100 random initial conditions were compared to the result of tree expansion. Wéshow t
mean percentage of random initial conditions doing better than tree expansion ocondyrgss
value only, and on both simultaneously. To give an idea of the distribution we also show the

median configuration and thd' Sentile most favorable to random initial conditions.
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Metric MDS Points in Configuration| 5 10 1520(25| 30|40
%age of RIC trials as good or| Clusters 2 3 41 5| 6| 6| 7
better than Tree Expansion...
...for Stress only mean % 6926 | 21|16|13|12|8
...for p-value only mean % 7342 17/9 (|3 |3 |1
...for both Stress and p-value | mean % 15 (3 |0 ([0 |O |O |O
simultaneously median % 0 0 0 |0 |O |O |O
5"centile% 69 |30 |0 |0 |O |O |O
Non-Metric MDS Points in 5 |10{15|20(25|30|40|50|60]| 80
%age of RIC trials as good or | Configuration
better than Tree Expansion... | Clusters 2| 3| 4, 5 6/ 6 7 7 8 ¢
... for Stress only mean % 1623213137, 31(31(28|25]|26
... for p-value only mean % 3440 38| 27|21|25|17| 22|18 |18
...for both Stress and p-value | mean % 15/4 |6 |4 |3 |3 |3 (4 |2 |4
simultaneously median % 4 |0 |O |0 |O |O |O |O |O |O
5"centile% 59 |37 |41 |53 |19 |35 |28 |37 |30 |48

Tables 1 and 2 Comparing Random Initial Condition trials to Triégpansion. The mean and highest 20-ile of 99

data points, where each time 100 trials were ruh different initial configurations and their resabmpared to

the result of tree expansion. In the “both simétausly” case, we report the mean rather than #dian, and

also report the'Bcentile, because floor effects quickly intervethe: median for “both” is zero for all number of
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points. The B centile is the number of random trials, out of 1@6ing better than tree expansion in the one-in-
twenty situation where that number is the highésiother remarkable fact is that the probabilif@sa random
trial of being better than tree expansion for stresd for p-value, are not independent, but iralgnelated. This
shows that tree expansion strikes a remarkable mompe between both criteria.

* For small configurations the large majority ohdom initial configuration converges to the samefiguration

as tree expansion does.
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Comments on tables 1 and 2:

For non-metric MDS, random initial conditions results are more frequently egoal t

better than tree expansion results. We believe that it is because Non-me®is MBs
demanding than metric MDS (it only tries to respect the order of the original
dissimilarities) and that therefore the process of organizing internpesigges of

expansion is stunted by being stopped as soon as intermediary dissimilegitigsoal
enough”.

For metric MDS, percentages of random initial conditions that yield as gosdlaae

either stress or p-value steadily decrease with the number of points inra.patte

For non-metric MDS, the percentage of random initial conditions that yieldoasay

result on either stress or p-value is almost constant, and confirm common wistddm tha

or 5 random trials are usually enough to get a good value of stress.

For both metric and non-metric MDS, the distribution of results is very skewed. The
medians are much lower than the means; i.e., there are a few of the 99 coafigdoati

which many random conditions will do fairly well, but for the large majority the

very poorly.

For metric MDS, the probabilities of being better on Stress and being bettesatuep

are not independent; if they had been the mean on both would be a product of the means
on each. In fact the percentage of simultaneous success is much lower than can be
predicted from the percentages of being better on one count only. This suggests that for
metric MDS there has to be a trade-off between both properties. For thisftdulsth

tree expansion and gradient descent from classical MDS strike a much better
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compromise than random conditions can hope to reach; within that compromise, tree
expansion favors p-value and descent from classical MDS favors stress.
vi.  For non-metric MDS, the probabilities of being better on Stress and being better on p

value seem to be fairly independent.
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Example: Multidimensional Scaling of Cereal data:

As an example, several scaling techniques were applied to the data offehed1f®®3 ASA

Statistical Graphics Expositioht(p://lib.stat.cmu.edu/datasets/1993.expo/cerekthe data has

13 fields, the first two being categorical: cereal manufacturer, and hot orezeld.c“Hot or

cold” was encoded as +1 or -1. Thereatfter, all 12 numerical fields were rrauial a mean 0
and a variance 1, and between-cereal distance was computed in the resulting 12dahensi
Euclidian space. Two approaches were taken to this data: first, by dgstecording to the
cereal manufacturer, and second, by building a SAHN Tree (centroid-basedgritiusy
manufacturer did not yield any significant classification — p values for @aiods were greater
than .5. For the second approach, all scaling methods were able to cluster the poinis decentl
but tree expansion did so much better. Table 3 summarizes the quantitative resultgyrand F

10 shows the resulting configurations.
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Metric Non-Metric (Kruskal-Sheparg

Stress | p-value cost index| Stress | p-value Costinde
Tree Expansion 23.8%3.9e-6| 127,769 184% 1.7e6 561,814
CMDS + D with GD or KS 23.4 %| 1.8 e-3| 335,566 185% 1.1e5 154,154
CMDS + D without gradient descent 32.7% 20e-4 n/a 29.8 % 2.4 e-4 n/a
or Kruskal-Shepard descent.
non weighted Tree Expansion 232 % 19e4 498,118 18.4 % 19e-6 692,216
Circular Initial Configuration 24.0% 1.9e-3 1,555,708 20.2 % 2.2e3 492,107
(better than random on most counts)

N

Table 3: Stress, p-value, and computing cost for scalowfigurations of the cereal data, obtained etheFiee

Expansion or by gradient descent (or Kruskal-Sr#peompleting CMDS.
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Symbol

Ad-hoc title
and description

Cereals in that cluster

Fruits and Nuts
fairly rich in protein and fat
but low in slow carbs

Almond_Delight R
Crispy_Wheat_&_ Raisins G
Life Q
Quaker_Oat_Squares Q
Clusters G
Raisin_Nut_Bran G

Cracklin'_Oat_Bran K
Great_Grains_Pecan P
Muesli_Raisins,_Dates,_&_ Almonds R
Muesli_Raisins, Peaches, & Pecans R
100%_Natural_Bran Q

Fruits and Bran

Just_Right_Fruit_& Nut K

Fruit_& Fibre_Dates, Walnuts,_and_Oats P

. heavier — densest cereals Total_Raisin_Bran G Oatmeal_Raisin_Crisp G
Post_Nat._Raisin_Bran P Basic_4 G
Raisin_Bran K Nutri-Grain_Almond-Raisin K
Fruitful_Bran K Mueslix_Crispy_Blend K
i Just_Right_Crunchy__Nuggets K Special_K K

Eglha sslosvsliacri)eczftglts TotaI_Corn_FIake_s G C_orn_Che)g R

hi sodium ' Total_Whole_Grain G Rice_Krispies K
Product_19 K Corn_Flakes K
Cheerios G Rice_Chex R

Kix G

Puffed_Rice Q Bran_Chex R

Puffed and Puffed_Wheat Q Wheat_Chex R

agglomerated Frosted_Mini-Wheats K Crispix K

low fat, sugar and fiber Strawberry_Fruit_ Wheats N Triples G

content, Raisin_Squares K Double_Chex R

medium slow carb content | Shredded_Wheat_'n'Bran N Nutri-grain_Wheat K
Shredded_Wheat_spoon_size N Grape_Nuts_Flakes P
Shredded_Wheat N Bran_Flakes P
Multi-Grain_Cheerios G Grape-Nuts P
Wheaties G

* Hot cereals Cream_of_Wheat_(Quick) N

Maypo A
Quaker_Oatmeal Q

low calories, low slow carbs
low sugar, high potassium

All-Bran K
All-Bran_with_Extra_Fiber K

Fancy cereals

more sugar,
lower shelf placement

_Crisp P

Smacks K
Apple_Jacks K
Corn_Pops K
Froot_Loops K
Lucky_Charms G
Cocoa_Puffs G
Count_Chocula G
Trix G
Fruity_Pebbles P

Honey-comb P

Cap'n'Crunch Q
Honey_Graham_Ohs Q
Cinnamon_Toast_Crunch G
Apple_Cinnamon_Cheerios G
Honey_Nut_Cheerios G
Nut&Honey_Crunch K
Wheaties_Honey_Gold G
Golden_Grahams G
Frosted_Flakes K

Table 4: The clusters defined by a section of the SAHN &tethe 7' level. The cluster titles are descriptive, and

the comments below the titles summarize the mamncon properties, observed manually, for the cluster

members.
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Figure 10: Rendering the cereal data by different algorithaaglassical scaling (Young-Torgerson reductibn);
classical scaling followed by a gradient descemhiteimize residual square error; c. expansion efSHN tree,
applying gradient descent to adjust the configarativery time a point is split. Notice how Classéceals
(rendered by green triangles) are dispersed wheadient descent takes classical scaling as anliogrgiguration,
because that cluster overlaps another one whictoie compact. This is a “mountain pass” effecisgsobably
the isolation of two “dark diamond” points insidetcluster of “purple squares”. In contrast, tlee expansion is

relatively free of such effects.
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Ramifications:

The computations described here have just begun to explore a large set of posaiiike var
Only one type of tree was used (binary SAHN centroid tree). It is likelyitiarent types of
trees are more efficient for different data sets. Tree expansion does nai bavestricted to
expanding binary trees; one can easily figure extensions of the method yskigcaof tree.

When computing time is not critical, we suggest expanding several candidate tree

In fact expanding a non-binary tree is equivalent to skipping a few stagesrofadiary
gradient descent in expanding a binary tree. Such a strategy can be empldgzdtdbliif
computing power is at stake, or simply if it is known from the structure of the dafavlea
stages of expansion are sufficient. The archetypical example would ituigosi of
rendering known clusters, to first use tree expansion (or another algorithm)dah@atuster

centroids, and then in one stage replace all centroids by the points of the corresgdastiing c

One variant we considered and which occasionally yielded better results thaedépothe

main variant was not to consider the differences in centroid mass during theigdadieents.

The simulations were limited to 2-D configurations, even though the algorithmsapjsgefor
uni-dimensional scaling (UDS). The uniqueness of UDS stems from two peamdidirst, the
local minima problems of gradient descent are much worse in one dimension, and second,

being in one dimension only facilitates a combinatorial approach (Defays 1978). i&ie bel
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that for UDS, the best use of tree expansion will require its combination with feeurist
combinatorial techniques. The simplest example is to confine heuristic exgld@athe group
of permutations along the tree (the group generated by all transpositisrsdifect offspring
of the same node), which is a subgroup of oflp@t of the N! permutations of all points. For
large data sets, one could explore all tree-defined permutations only a fesxdimwve from the
current level. For example, when expanding from four point to five, rather thahtkelec
immediate best configuration of 5 points (best out of two choices), one could consider all 16
potentially resulting configurations of 8 points, then finalize the choice ofwbgbint
configuration to the configuration leading to the lowest 8—point stress. In theatippliof tree
expansion, as in other matters, UDS deserves a fully independent treatmerde lnédhe
facility with which it allows combinatorial schemes, and because of the domebetween

UDS and tree-building.

Even for 2-D or 3-D configurations, tree expansion can be applied in conjunction with some
random exploration of initial conditions space. For example, one can replace yhzaezof
expansion, placing the first P points by random exploration, and then expanding those nodes
into a full configuration by normal tree expansion. The configuration obtainedeby tre
expansion at various steps can be used as one of the strains for a genetic algaritthesi
problems requiring gradient descent, genetic algorithms (Goldberg 198%dmvefficient

ways of cutting down the complexity of random exploration (Nolfi, EIman et al. 1994).
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Tree expansion can also be combined with heuristic search by applying thadattis level
of tree-building. For a tree built bottom-up (as SAHN trees are), some aggtmmerhoices
are obvious and some are not. By combining all the close calls into a familgrob#dttrees,

one creates as many possible ways of seeking an optimal configuration.

Finally, Tree Expansion may be combined with other strategies that can bhiasdbang in
favor of particular clusters. The most prominent of these is to weight thebciatni of
different pairs of points in the gradient, in order to favor either the within-clostae
between-cluster distances. Because the good properties of tree expansiatedrgm setting
a proper initial configuration, all others methods that do not rely on particulal aahditions

should benefit from being used in conjunction with tree expansion.

Summary and conclusion:

This article suggests a new type of initial configuration to use for gradisicent
multidimensional scaling algorithms such as Kruskal-Shepard. Using a hieaaychical tree
of the points to scale, one can expand that tree in the final space, starting with #melroot
repeatedly replacing each node by its two successors; at each expansisesoiie gradient
descent again to reshape the configuration. Compared to applying gradient detbeergdult

of classical scaling, tree expansion is tidier, and more apt at keeping tquettiebelonging
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to the same cluster. In particular, when the clusters tend to overlap, treeé@xpandind

significant representations whereas other methods fail.

Besides our main result, the explorations made in this paper shed light on basioatiffere
between metric and non-metric MDS, that users should keep in mind when they have a choice
between both methods. Metric MDS is more demanding; by doing gradient descent on the
dissimilarities themselves it strives for perfection. In comparison, reineMDS only strives

for distances in the right order. In the scope of our simulations, these diffetemnoe caused
finer results from metric MDS: first in that contingent structure of hgeneous data can be
rendered significantly by metric MDS (Figure 6), but not by non-metric; ecahslly, in the
trade-off that metric MDS forces between finding a good stress and rendeustgre (Table

1). The goal of the Kruskal-Shepard algorithm is as much finding the psychofuettion
relating dissimilarities to distances as it is to find those distances. HetimraKruskal-

Shepard algorithm as demanding on the distances as metric MDS is, one would need to add
constraints on the shape of the psychometric function, constraints that would make furthe
demands than the simple monotonous regression. In fact, there lies a continuumtbfredgor
from metric MDS, where the psychometric function is imposed to be identity, tortis&a-
Shepard algorithm, where it can take any monotonous shape. For this reason, the choice
between metric and non-metric MDS —or other intermediary algorithms—should dedlicbt

by convenience, but by what one expects the psychometric function to be.
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The results presented here should be taken as the floor, not the ceiling, of treeoaxpansi
efficiency. Firstly, there is no guarantee that type of tree usedvasréhe best for the testing
data. Secondly, the data might not be the most difficult for the classical methiods tha
compared tree expansion to. In our results, metric scaling of the disgiesl&nilowed by
gradient descent fare quite well, always better than random initial condifitms is not the
case for all possible problems; for example Arabie and Boorman (1973, p.160) repogt scal
configuration representing partitions for which CMS followed by non-metridigmadescent
fared worse than random initial conditions. In contrast to the metric gadlsimilarities, tree
expansion is a robust process, which we expect to degrade well with problem djffisulty

weakness being only the representative quality of the tree.

By using tree expansion, classical metric and non-metric scaling beaedmé&ksof application

of hierarchical clustering, and the large existent corpus of clustegogthins must be tested

to find out which tree are the best candidates for expansion.
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