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Abstract: 

 

This article suggests a new type of initial configuration to use for gradient descent 

multidimensional scaling algorithms such as the Kruskal-Shepard algorithm.  Using a binary 

hierarchical tree of the points to scale, one can expand that tree in the final space, starting with 

the root and repeatedly replacing each node by its two successors; at each expansion one uses 

the gradient descent again to reshape the configuration.  Compared to applying gradient descent 

to the result of classical scaling, tree expansion yields similar levels of stress, but renders better 

the grouping of points belonging to similar clusters. 
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Introduction 

 

When trying to visualize the proximity structure of a high dimensional pattern, one frequently 

has to choose between clustering into a hierarchical tree, or scaling down to two or three 

dimensions.  Conventional wisdom considers that multi-dimensional scaling (MDS) is good at 

representing the big picture, whereas hierarchical clustering (HC)  handles local details more 

accurately (Kruskal 1977; Arabie, Hubert et al. 1996).  Ideally, one would want a low-

dimensional configuration rendering both the global and local properties; such that, for 

example, if one drew between the final points a hierarchical tree obtained from the original 

data, this tree would appear simple and related branches would stay next to each other.  This 

paper suggests a method that finds such tree-friendly scaling configurations. 

 

There is a second situation where existing strategies come short: if there exists extraneous 

information in addition to the dissimilarities.  For example, the points can be extracted from 

known different populations, such as male and female participants in an experiment, or 

different political parties in an opinion poll.  The different clusters may or not have the same 

spatial distribution; yet of the many stress-equivalent ways of representing the data, some must 

better than others at representing this extraneous information.  Likely, it is better to group 

together points belonging to the same cluster.  In some cases, the preexisting classification may 

be hierarchical.  For example, a library can display a 2-dimensional map of topics and sciences 

by scaling similarities between sciences; in which case it is important to respect the library’s 
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call number system along with the similarity structure.  Until now, both classical and non-

metric scaling are ill-equipped to represent jointly the similarity structure and extraneous 

information.  In contrast, the method suggested here can use such extraneous information. 

 

Before we introduce our method, let us review the shortcomings of current MDS strategies.  

Consider a set of data points (Pi) of known dissimilarities (δi,j) that has to be visualized in two 

dimensions.  When the dissimilarities should approximate directly actual distances between 

points, the MDS is metric, and can be done in two ways: by classical MDS, in which the points 

are projected orthogonally in the subspace encoding a maximum of variance (Young and 

Householder 1938; Torgerson 1952; Cox and Cox 2001), or by a metric gradient descent, trying 

to minimize the sum of residuals (the squared differences between distances and the 

corresponding dissimilarities).  When the mapping between dissimilarities and distances is 

unknown—for example obscured by an unknown psychometric function—one can rely only on 

the order of the dissimilarities, and scaling is achieved by repeating a gradient descent trying to 

minimize the sum of residuals between distances and the same distances monotonically reduced 

to the dissimilarities (Shepard 1962; Shepard 1962; Kruskal 1964; Kruskal 1964).  In the 

following paragraphs we will examine in turn why classical, metric MDS misrepresents smaller 

inter-point distances, and how gradient descent algorithms, including non-metric scaling, 

depend on initial configurations. 
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Why existing scaling strategies deal poorly with local structure: 

 

1. In the case of classical multi-dimensional scaling (CMDS), the (δi,j)’s are taken to represent 

Euclidian distances, and (Pi) can be rendered after a Young-Torgerson reduction, by projecting 

the points in two dimensions for graphing (Young and Householder 1938; Torgerson 1952; Cox 

and Cox 2001).  However, CMDS is not the best least squares rendering of distances– it is only 

the best rendering by orthogonal projection.  In fact the sum of residuals (sum of squared error 

over inter-point distances) computed for a CMDS result is always high, in part because CMDS, 

like all orthogonal projections, systematically decreases distances.  The following example 

(Figure 1) shows where problems can lie: 
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Figure 1:  Classic MDS will project B and C onto the same point at intersection of dotted axes, but  minimal least 

square error for the distances within a one-dimensional configuration is for B” and C”, whose center is at dAB from 

A, and whose distance dB”C”  = dBC/3.    
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Figure 1 illustrates two problems:  

1. Because it lies parallel to an eigenvector pruned by the CMDS, the distance between B 

and C has been ignored.  In contrast, the distance between A and the other points is 

almost conserved, because it is almost collinear to the eigenvector preserved by the 

CMDS. 

2. The projection ignores the arc, so that even though B and C are both at the same 

distance from A, their projection gets closer than that distance.  

 

A first step in estimating the true efficiency of CMDS is to dilate resulting distances by a factor 

ρ2 = Σij [(δij.dij)/(dij
2)].  This factor makes up for dividing the average arc by its cosine.  Even 

then the sum of residuals can easily lag by 20% behind that obtained after a gradient descent 

adjustment (see the results section and Figure 5).   

 

Still, CMDS reduces the original distances unequally, depending on which eigenvector bears 

most of a distance.  For this reason, CMDS can mistreat gravely the details of local structure 

when these details lie in dimensions that are suppressed.  When the algorithm deals with high-

dimensional underlying patterns, it is very likely that many local patterns will be entirely 

misrepresented because of this CMDS shortcoming.  So, if one wants to render as accurately as 

possible the set of between-point distances, CMDS projection must be followed by a gradient 

descent to minimize the sum of square errors.   
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However, even metric gradient descent starting from the CMDS configuration can fail to 

properly restitute local sub-patterns, because when the initial projection brings inside a 2-D 

sub-pattern points that should lie outside, the gradient descent is unable to move them outside, 

and the “pressure” caused by their presence distorts local details.  This is illustrated below in 

Figure 2, where CMDS superimposes two clusters that should be kept separated, and gradient 

descent as a result explodes one of the clusters into a ring around the other one.   
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Excerp of Cereal Data Classical MDS

Classic Cereals
(Corn Flakes,
Cheerios…)

Puffed and
Agglomerated
(Shredded
Wheat, Puffed
Rice…)

Excerp of Cereal data
 Gradient descent from Classical MDS

Classic Cereals
(Corn Flakes,
Cheerios…)

Puffed and
Agglomerated
(Shredded
Wheat, Puffed
Rice…)

 

Figure 2: Detail of MDS made on the ASA Cereal data set.  Two out of seven types of cereals are projected on top 

of each other by CMDS.  Applying gradient descent worsens this particular feature of the configuration, because 

the central repulsion creates a crown of local minima in which the “classic cereal” points settle.
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2. In the non-metric case, the (δij) are on an ordinal rather than a ratio scale, in which case an 

initial configuration is modified to optimize the rank order of the resulting distances, (di,j).  The 

Shepard-Kruskal algorithm (Shepard 1962; Shepard 1962; Kruskal 1964; Kruskal 1964) 

establishes for existing distances (dij) a set of target distances (d’ij) that are in the same order as 

the (δij)’s—when dij is already in order, d’ij is set to equal dij, and when sequences of dij ’s are in 

disarray,  all corresponding d’ij ’s are set to the average of these dij,’s.  The target distances are 

then used as dissimilarities in a metric gradient descent that modifies the initial configuration to 

minimize Stress (the normalized sum of residuals, Σ(dij-d’ ij)
2/Σdij

2 ).  Because this metric 

gradient descent can disturb the rank order again, the process must be iterated, until the 

configuration is stable. 

Because gradient descent adjusts an initial configuration to a local minimum, its result depends 

on this initial configuration.  To obtain a good final solution, one possible strategy is to try 

several random initial configurations and keep the most favorable.  While this method in theory 

can explore the entire space of solutions, it is computationally costly.  In practice a few 

attempts will generally yield at least one solution with acceptable stress. A second strategy is to 

use the result of CMDS as a starting configuration; this can be done after applying CMDS 

either on the dissimilarities themselves (treating them as distances), or on pseudo-distances 

reconstructed to be consistent with the rank order of dissimilarities (Lingoes and Roskam 

1973).  This latter strategy is a one-shot attempt, computationally effective but final.  It can 

occasionally fail, as illustrated in Figure 3, and cannot be improved gracefully by increasing 
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computational power.  In conclusion, neither random configurations nor a CMDS-produced 

configuration are ideal starting points for the Kruskal-Shepard non-metric MDS. 
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Figure 3: Local minima in a metric energy landscape and failure of CMDS-seeded gradient descent.  When scaling 

the five points (4, 4, 0), (4,-4,0), (-4,4,0), (-4,-4,0) and (1,1,7), CMDS projects the latter in the plane Z=0, onto the 

point (1,1,0) shown in grey.  This graph shows a 2-D section of a 10-variable function: the sum of residuals 

landscape, by fixing the coordinates of the 4 points that were already in the plane (“the base”) and showing the 

sum of residuals for different locations of the 5th point.  For moving the grey point only, there are at least five local 

minima: four located outside the base and one about (-1, -1, 0).  In fact, this latter point is where gradient descent 

takes the grey point, but it is not the absolute minimum.  
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The tree-expansion strategy: 

 

In summary, gradient descent appears as the best method to render the dissimilarities, but on 

one hand it requires a good starting configuration, and on the other hand it does not take in 

consideration the supplementary information that can be given by a hierarchical tree.  We 

suggest solving these two problems together by using that supplementary information to 

construct a starting configuration which gradient descent will optimize with regard to stress.  In 

the process of arranging the points (Pi) in two dimensions, the dissimilarity structure is 

unavoidably impoverished – but it can be impoverished less, by keeping in the final 

configuration some of the information obtained by a clustering algorithm, independently of the 

scaling algorithm. 

 

In order to jointly minimize stress and render the cluster structure, we propose to apply gradient 

descent (or Kruskal-Shepard) repeatedly to a growing configuration, obtained by expanding the 

hierarchical tree.   This is illustrated by Figure 4 in which the hierarchical tree and successive 

configurations are shown bide by side.  Prior to using this algorithm, one needs the dissimilarity 

matrix at all stages of expansion.  If the tree has been constructed from a SAHN algorithm these 

dissimilarities are already available, otherwise they have to be computed in a one-sweep 

forward pass.  Given these dissimilarities, the algorithm is to: 
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1. Position a starting configuration: 

a. Take a section of the hierarchical tree containing D+1 points where D is the final dimension 

(e.g., 3 points for a planar MDS).  This is the current section of the tree.  

b. Using the dissimilarities between these points, place them in space exactly using CMDS. 

c. Test that the resulting configuration defines a variety of dimension D.  If yes, this is the starting 

configuration.  If no, use as current section a section with one more point (the highest numbered 

tree node in the current section is replaced by its two offspring), and go to step b. 

2.  Expand the tree: 

a. In the current section, select the highest tree node, and replace it, in place, by its offspring; 

b. Adjust the resulting pattern by gradient descent (or Kruskal-Shepard) to a “decent” accuracy.   

i. One wants to adjust the location of all existing points only to a precision 
�

, just more 

accurate than the movements we can expect to happen at the next stage of the 

algorithm.  The idea is to avoid finessing the convergence past an accuracy that will 

be undone anyway by the next split.  Because 
�

 must be computed before the 

convergence, on estimates of the next positions, it is necessarily approximate.  After 

testing several heuristics, we have settled for taking 
�

 = (1/16).(�P’P”
2/max(� ij)

2.  The 

gradient descent is stopped by a test on the relative movement: when for all points 

their movement divided by the average distance between points is smaller than 
�

.   

ii.  In applying gradient descent, one has the choice to take into account the mass of the 

points or not: 

1. Points are considered of equal mass, SSE= � ij (dij-� ij)
2 

2. Heavier points move less, SSE= � ij mimj (dij-� ij)
2  

The results presented use the weighted algorithm, number 2. 

c. Return to step a. until all point in the current configuration represent terminal nodes. 

3. Make a final adjustment down to the desired accuracy.  
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Figure 4: MDS by Tree 
expansion. 
 
In the left column, the 
SAHN tree of Shepard’s 
colors: the 9 circles at the 
bottom are the colors used 
experimentally; higher 
level tree nodes received 
interpolated RGB values.   
The top of the tree (top 
node and its immediate 
offspring) is truncated. 
 
In the right column, 
successive 2-D 
configurations obtained 
by tree expansion.  The 3-
point configuration is an 
exact CMDS scaling. 
Subsequent 
configurations (4 to 9 
points) are obtained by 
Kruskal-Shepard, using as 
initial condition the 
previous configuration in 
which one point is 
replaced by its two 
contributors.   The point 
chosen is the current 
highest tree node, it will 
be replaced by the two 
tree nodes that it consists 
of, and those two nodes 
start with their parent’s 
location – it is the 
Kruskal-Shepard 
algorithm that pulls them 
apart. 
 
On both sides, a blue 
arrow points at the node 
about to be split.  In the 
right panel, as the pattern 
is expanded from 3 points 
to the full  9 points, we 
see that some expansions 
require more 
reorganization (e.g., from 
6 to 7 points) but there is 
no reversal of relative 
positions. 
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The algorithm allows the initial configuration to grow from the hierarchical organization of the 

rendered pattern.  Points spawned by the same node stay near that starting point, and insofar as 

dissimilarities allow they will remain in the same region throughout the expanding process.  

Thus, points that should be clustered together are not initially separated by a gradient 

“mountain pass”, as they often would be in a random initial configuration.  This algorithm 

shares with others the benefits of gradient descent, but with respect to the local optimum issue it 

improves over other methods by finding a local optimum that respects as much as possible the 

hierarchical tree. 

 

Simulations 

 

The goal of simulations was to validate the algorithm and start estimating its strengths and 

weaknesses.  Too many variables were involved to chart the complete problem space; the two 

most important that were not considered were variations in the type of classification tree, and in 

configuration dimension. The variables that were varied involve the number of points and 

different conditions of grouping.  We present side-by-side results from the metric gradient 

descent and from non-metric, Kruskal-Shepard gradient descent.   
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Simulation Method: 

 

N patterns of P points were randomly generated in RP-1: either all from the same population, 

with each coordinate from a random Gaussian distribution of mean zero and variance one, or 

from C different populations, deviating with variance one from cluster centroids themselves 

drawn randomly with a different variance (the parameter “clusterscale”).   Random deviates 

were computed using the routine “gasdev()” from (Press, Teukolsky et al. 1992).  After 

generation, each pattern was centered on zero.  For the non-metric simulations, the distances dij 

these were transformed into dissimilarities δij by the following function: 

δij= dij + .49* sin(2*dij) + noise*gasdev() ;  in which noise=0.1 unless reported otherwise. 

 

Each pattern was then organized as a binary ordered hierarchical tree by the centroid-based 

SAHN algorithm (Gordon 1996), and the tree was used for our expansion algorithm.  In the 

non-metric case, we built the SAHN tree from the dissimilarities.  Because the dissimilarities 

were noised distances, they no longer conformed to the triangular inequality.  As a result, when 

using constructing the SAHN tree directly from dissimilarities, negative square dissimilarities 

would occasionally appear.  One way to solve this would be to use some of the additive 

constant methods developed prior to non-metric scaling.  However we found it more efficient to 

simply adjust the computed dissimilarity during the SAHN algorithm by the following function:  

δ’  = δ+ + e-�2         in which δ+ is the positive part of δ. 



Spatially Expanding Hierarchical Trees 17 

 

When testing for the ability to render known clusters, the tree was computed with a forced 

compliance to the original clusters so that each of the different original populations corresponds 

exactly to a sub-tree.  This was done during the agglomeration phase of SAHN by choosing the 

two closest points under the condition that they belonged to the same cluster, up to step (N-C) 

of agglomeration, at which stage nodes were in one-to-one correspondence to the original 

clusters, and the agglomeration could be finished without constraint.  This type of tree is 

hereafter called “cluster-compliant”, or simply “compliant” tree. 

 

In the metric simulations the gradient descent was made on the sum of residuals, SSE = Σij (dij-

δij)
2.  In the non-metric simulations, following Kruskal, the gradient descent was made on the 

stress computed with distances monotonically regressed to dissimilarities:  

Stress =  ( Σ mimj(dij-d’ ij)
2 ) / ( Σ mimj(dij)

2 )  

in which (d’ij) are the distances regressed monotonically to the similarities and 

mi is the mass of node i. 

For the metric program, we did not adopt such a complicated step length computation as 

Kruskal’s; instead we monitored 3 consecutive steps and decreased the step length if these were 

increasing or oscillating, and increased it if they were decreasing too fast.  In conjunction with 

this simpler procedure, and for computing time reasons, we automatically cancelled trials for 

which the convergence was too long for any one of the gradient descents.  The upper limit was 

arbitrarily set at 100*N3; when a trial was cancelled its results were discarded for all methods 

together.  Quite possibly this pruning of difficult configurations has introduced a small bias, 
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however for N>10 very few trials were cancelled, and because we are reporting medians rather 

than means we do not believe that the results are much affected.  For the non-metric simulations 

we followed Kruskal’s formula for the step length. 

 

This data was then used to find fitting configurations by the following methods: 

a. Classic Multi-Dimensional Scaling (CMDS). 

b. CMDS rescaled by a dilatation or ratio Σij [(δij.dij)/(dij
2)] (for minimal residuals). 

c. CMDS plus dilatation followed by a gradient descent. 

d. Expanding the SAHN-tree without considering mass. 

e. Expanding the SAHN-tree, considering mass. 

f. Expanding the compliant tree without considering mass. 

g. Expanding the compliant tree, considering mass. 

h. Doing gradient descent from circular initial conditions (all initial points equally spaced 

on a circle). 

i. Doing gradient descent from random initial conditions. 

 

Considering the mass during expansions had a very minor effect, so the Figures report only 

results from weighted expansion. Similarly, circular initial conditions results are almost 

identical with random initial condition results.  We will most often report only the latter. Each 

number reported is the median of 99 trials using independent random patterns.  We also 

recorded, but found no interest in reporting, the mean, and the lowest and highest 5% quantiles.   
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Simulation results: 

 

Comparing Stress from different methods: Figure 5. 
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Stress - Non-Metric MDS
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Figure 5: Stress, in %, of configurations from different MDS methods.  S= Σij (δij-dij)
2 / Σij dij2.  All points are 

from the same population (C=1).  When parameters are varied (C>1, clusterscale from 0.0 to 4.0), the stress 

diminishes when clusters are better separated and augments when there are more clusters with the same separation, 

but the different methods stay in the same ratio.     
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Rendering Contingent Data Structure: Figures 6 and 7. 

 

To test how good each MDS algorithm is at rendering accidental structure appearing in data and 

captured by a SAHN tree, we measured how well clusters defined by the SAHN tree are 

separated in the final configuration.  Using patterns of N2 points we adopt the N clusters 

defined by sectioning the tree at the appropriate level.  (Because the tree groups points on the 

basis of their observed distance, the clusters can contain more or less than N points; they are 

only constrained to an average of N point per cluster.)  The chosen measure of how well these 

clusters are separated in the configuration obtained by one of the scaling algorithms is the 

Fisher significance of the groups they define.  I.e., from the coordinates of the points in the final 

configuration, an F-ratio can be computed, and from it a p-value.  This p-value reflects the 

probability that a random configuration would keep the clustered points as well together as the 

observed configuration does.  The p-value is not a perfect measure, in particular it improves 

when the points that belong to the same cluster get closer to each other, regardless of what their 

dissimilarity is.  By over-gathering the points, one gets a better p-value at the expense of a 

higher stress; notably, Classical Multi-Dimensional Scaling does just that, because it tends to 

squash more strongly smaller dissimilarities, which happen to lie more often within the clusters 

than between them.  However, for solutions equivalent in stress, the p-value reflects how well 

the clusters are separated. 
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Figure 6:  How well is contingent structure rendered?  These graphs plot p-value (the significance of the grouping) 

in function of the number N of clusters (for a total of N2 points).  When using metric scaling (gradient descent on 

the dissimilarities), the accidental organization of homogeneous data (all points come from the same Gaussian 

distribution) is can be preserved by Tree Expansion, but not when other algorithms are used.  When using non-

metric scaling, Tree Expansion still fares better than other methods, but overall all methods fail to preserve 

structure.   
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Non-Metric MDS - Cluster Scale = 1.0
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Figure 7: Rendering contingent structure of heterogeneous data: if the data is drawn from different populations, 

accidental structure is more pronounced and the p-value becomes more significant.  Here we show only the non-

metric MDS results (metric results are similar).  The more separated the population the easier it is to get good final 

separation from any kind of initial condition; however tree expansion is always the best initial condition.  When 

the scale is only 0.5, good separation only appears for numerous configurations (more than 100 points).  With very 

heterogeneous data (clusters separated by more than one bandwidth),  Classical MDS (in this case, applied to 

dissimilarities) can occasionally give the best p-value, not because it separates clusters better, but because in the 

same distance-squashing process that causes a higher stress, CMDS brings points of the same cluster closer to their 

centroid.  In all cases, Tree expansion gives a better p-value than Kruskal-Shepard gradient descent from any other 

initial condition.  
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Rendering pre-assigned clusters: Figure 8. 

 

Sometimes the grouping of data points is known in advance from extraneous data.  For 

example, clustering could represent the value of a between-subject factor, observed or assigned.  

In this case the tree-expansion algorithm must be used with a compliant tree, that is, a tree that 

first organizes the data points inside clusters before it organizes the clusters.  With such a tree, 

expansion will first arrange spatially cluster centroids, then arrange the individual points 

making up these clusters. 

 



Spatially Expanding Hierarchical Trees 25 

 

Rendering Pre-Assigned Clusters
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Rendering Pre-Assigned Clusters 
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Figure 8: How well are pre-assigned clusters rendered?  These graphs plot p-value (the significance of the 

grouping) in function of the number N of clusters (for a total of N2 points).  Here the pre-assigned clusters 

correspond to different populations in the full-dimensional space, such that the centroids of the clusters are 

distributed with 0.5 times the bandwidth used to distribute points inside clusters around their centroid.  The 

clusters are therefore widely overlapping.  Nevertheless, both in the metric and the non-metric case, 

Multidimensional scaling can render in two dimensions the difference between populations.  Expanding the 

compliant tree is of all gradient descents the most efficient way to render the clusters (In fact it eventually 

surpasses CMDS in spite of the p-value bias for the latter, at 20 clusters – not shown; p-values for more than 20 

clusters could not be computed as they exceeded the double float precision but the F statistic indicated that 

eventually gradient descent from CMDS also outperforms simple CMDS).   If the clusters do not correspond to 

any difference in spatial repartition (Result not shown) – Cluster Scale=0.0, corresponding to a homogenous 

population with arbitrary labeling– all p-values are very poor (over .5) but compliant tree expansion is the best of 

those bad solutions.   

 

 



Spatially Expanding Hierarchical Trees 26 

Computational Cost: Figure 9. 

 

One of the worries one might have with the tree expansion method is about the cost of repeating 

the work of repeatedly organizing almost the same configuration.  The results presented in 

Figure 9 show that this worry is partly justified.  For non-metric scaling, tree expansion is about 

2.5 times as slow as doing Kruskal-Shepard only once, from the results of CMDS.  This does 

not take into account the lower order costs of building the tree for one algorithm, or of 

diagonalizing the double-centered dissimilarity matrix for the other algorithm.  For metric 

scaling, tree expansion is actually the cheapest way.  This result is counter-intuitive if one 

thinks in terms of re-doing the work, but makes sense when considering that each expansion 

stage provides a starting configuration very close to the final configuration for that stage.  
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Figure 9: Computational Cost.  The cost is measured in basic cycles (computing the contribution of one pair of 

points to one coordinate of the gradient).  Even though it is related to the implementation, this cycle count allows 

to compare the speed of convergence from different initial conditions.  
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Cost of doing better than Tree Expansion: 

 

If the main focus is on the quality of the configuration obtained, it makes sense to consider the 

strategy of starting gradient descent repeatedly from many random initial conditions.  One may 

hope that through the force of sheer numbers, a solution will be found that simultaneously 

lowers stress and renders well the original accidental structure.  Tables 1 and 2 present very 

contrasting results, denying this hope for metric scaling, but keeping the door open for non-

metric scaling.  Each column presents data from 99 configurations for each of which results 

from 100 random initial conditions were compared to the result of tree expansion.  We show the 

mean percentage of random initial conditions doing better than tree expansion on stress only, p-

value only, and on both simultaneously.  To give an idea of the distribution we also show the 

median configuration and the 5th centile most favorable to random initial conditions. 
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Points in Configuration 5 10 15 20 25 30 40 Metric MDS 

%age of RIC trials as good or 

better than Tree Expansion… 

Clusters 2 3 4 5 6 6 7 

…for Stress only mean % 69* 26* 21 16 13 12 8 

…for p-value only mean % 75* 42* 17 9 3 3 1 

…for both Stress and p-value 

simultaneously 

mean % 

median % 

5thcentile %  

15 

0 

69 

3 

0 

30 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

Points in 

Configuration 

5 10 15 20 25 30 40 50 60 80 Non-Metric MDS 

%age of RIC trials as good or 

better than Tree Expansion… Clusters 2 3 4 5 6 6 7 7 8 9 

… for Stress only mean % 76 32 32 31 37 31 31 28 25 26 

… for p-value only mean % 34 40 38 27 21 25 17 22 18 18 

…for both Stress and p-value 

simultaneously 

mean %  

median % 

5thcentile % 

15 

4 

59 

4 

0 

37 

6 

0 

41 

4 

0 

53 

3 

0 

19 

3 

0 

35 

3 

0 

28 

4 

0 

37 

2 

0 

30 

4 

0 

48 

 

Tables 1 and 2: Comparing Random Initial Condition trials to Tree Expansion.  The mean and highest 20-ile of 99 

data points, where each time 100 trials were run with different initial configurations and their result compared to 

the result of tree expansion.  In the “both simultaneously” case, we report the mean rather than the median, and 

also report the 5th centile, because floor effects quickly intervene: the median for “both” is zero for all number of 
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points.  The 5th centile is the number of random trials, out of 100, doing better than tree expansion in the one-in-

twenty situation where that number is the highest.  Another remarkable fact is that the probabilities for a random 

trial of being better than tree expansion for stress, and for p-value, are not independent, but inversely related.  This 

shows that tree expansion strikes a remarkable compromise between both criteria.  

* For small configurations the large majority of random initial configuration converges to the same configuration 

as tree expansion does. 
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Comments on tables 1 and 2:  

i. For non-metric MDS, random initial conditions results are more frequently equal to or 

better than tree expansion results.  We believe that it is because Non-metric MDS is less 

demanding than metric MDS (it only tries to respect the order of the original 

dissimilarities) and that therefore the process of organizing intermediary stages of 

expansion is stunted by being stopped as soon as intermediary dissimilarities are “good 

enough”. 

ii.  For metric MDS, percentages of random initial conditions that yield as good a result on 

either stress or p-value steadily decrease with the number of points in a pattern. 

iii.  For non-metric MDS, the percentage of random initial conditions that yield as good a 

result on either stress or p-value is almost constant, and confirm common wisdom that 4 

or 5 random trials are usually enough to get a good value of stress.   

iv. For both metric and non-metric MDS, the distribution of results is very skewed.  The 

medians are much lower than the means; i.e., there are a few of the 99 configurations for 

which many random conditions will do fairly well, but for the large majority they do 

very poorly.  

v. For metric MDS, the probabilities of being better on Stress and being better on p-value 

are not independent; if they had been the mean on both would be a product of the means 

on each.  In fact the percentage of simultaneous success is much lower than can be 

predicted from the percentages of being better on one count only.  This suggests that for 

metric MDS there has to be a trade-off between both properties.  For this trade-off, both 

tree expansion and gradient descent from classical MDS strike a much better 
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compromise than random conditions can hope to reach; within that compromise, tree 

expansion favors p-value and descent from classical MDS favors stress.    

vi. For non-metric MDS, the probabilities of being better on Stress and being better on p-

value seem to be fairly independent. 
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Example: Multidimensional Scaling of Cereal data: 

 

As an example, several scaling techniques were applied to the data offered for the 1993 ASA 

Statistical Graphics Exposition (http://lib.stat.cmu.edu/datasets/1993.expo/cereal).  The data has 

13 fields, the first two being categorical: cereal manufacturer, and hot or cold cereal.  “Hot or 

cold” was encoded as +1 or -1.  Thereafter, all 12 numerical fields were normalized to a mean 0 

and a variance 1, and between-cereal distance was computed in the resulting 12-dimensional 

Euclidian space.  Two approaches were taken to this data: first, by clustering according to the 

cereal manufacturer, and second, by building a SAHN Tree (centroid-based).  Clustering by 

manufacturer did not yield any significant classification – p values for all methods were greater 

than .5.  For the second approach, all scaling methods were able to cluster the points decently, 

but tree expansion did so much better.  Table 3 summarizes the quantitative results, and Figure 

10 shows the resulting configurations. 
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Metric Non-Metric (Kruskal-Shepard)  

Stress p-value cost index Stress p-value Cost index 

Tree Expansion 23.8 % 3.9 e-6 127,769 18.4 % 1.7 e-6 561,814 

CMDS + D with GD or KS 23.4 % 1.8 e-3 335,566 18.5 % 1.1 e-5 154,154 

CMDS + D without gradient descent  

or Kruskal-Shepard descent. 

32.7 % 2.0 e-4 n/a 29.8 % 2.4 e-4 n/a 

non weighted Tree Expansion 23.2 % 1.9 e-4 498,118 18.4 % 1.9 e-6 692,216 

Circular Initial Configuration  

(better than random on most counts) 

24.0 % 1.9 e-3 1,555,708 20.2 % 2.2 e-3 492,107 

 

Table 3: Stress, p-value, and computing cost for scaling configurations of the cereal data, obtained ether by Tree 

Expansion or by gradient descent (or Kruskal-Shepard) completing CMDS. 
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Symbol Ad-hoc title  
and description 

Cereals in that cluster  

  

Fruits and Nuts 
fairly rich in protein and fat  
but low in slow carbs 
 

 
Almond_Delight R 
Crispy_Wheat_&_Raisins G 
Life Q 
Quaker_Oat_Squares Q 
Clusters G 
Raisin_Nut_Bran G 

 
Cracklin'_Oat_Bran K 
Great_Grains_Pecan P 
Muesli_Raisins,_Dates,_&_Almonds R 
Muesli_Raisins,_Peaches,_&_Pecans R 
100%_Natural_Bran Q 

  

Fruits and Bran 
heavier – densest cereals 

 
Just_Right_Fruit_&_Nut K 
Total_Raisin_Bran G 
Post_Nat._Raisin_Bran P 
Raisin_Bran K 
Fruitful_Bran K 

 
Fruit_&_Fibre_Dates,_Walnuts,_and_Oats P 
Oatmeal_Raisin_Crisp G 
Basic_4 G 
Nutri-Grain_Almond-Raisin K 
Mueslix_Crispy_Blend K 

  

Classic Cereals 
high slow-carb content, 
hi sodium 

 
Just_Right_Crunchy__Nuggets K 
Total_Corn_Flakes G 
Total_Whole_Grain G 
Product_19 K 
Cheerios G 
 

 
Special_K K 
Corn_Chex R 
Rice_Krispies K 
Corn_Flakes K 
Rice_Chex R 
Kix G 

 

   x 
 

 

Puffed and 
agglomerated 
low fat, sugar and fiber 
content, 
medium slow carb content 

 
Puffed_Rice Q 
Puffed_Wheat Q 
Frosted_Mini-Wheats K 
Strawberry_Fruit_Wheats N 
Raisin_Squares K 
Shredded_Wheat_'n'Bran N 
Shredded_Wheat_spoon_size N 
Shredded_Wheat N 
Multi-Grain_Cheerios G 
Wheaties G 

 
Bran_Chex R 
Wheat_Chex R 
Crispix K 
Triples G 
Double_Chex R 
Nutri-grain_Wheat K 
Grape_Nuts_Flakes P 
Bran_Flakes P 
Grape-Nuts P 
 

*  
 

 

 Hot cereals 
 
Cream_of_Wheat_(Quick) N 
Maypo A 
Quaker_Oatmeal Q 

 

 
 

Pure Bran 
 
low calories, low slow carbs, 
low sugar, high potassium 

 
100%_Bran N 
All-Bran K 
All-Bran_with_Extra_Fiber K 

 

+ 
 

 

Fancy cereals 
more sugar, 
lower shelf placement 

 
_Crisp P 
Smacks K 
Apple_Jacks K 
Corn_Pops K 
Froot_Loops K 
Lucky_Charms G 
Cocoa_Puffs G 
Count_Chocula G 
Trix G 
Fruity_Pebbles P 

 
Honey-comb P 
Cap'n'Crunch Q 
Honey_Graham_Ohs Q 
Cinnamon_Toast_Crunch G 
Apple_Cinnamon_Cheerios G 
Honey_Nut_Cheerios G 
Nut&Honey_Crunch K 
Wheaties_Honey_Gold G 
Golden_Grahams G 
Frosted_Flakes K 
 

 
 
Table 4: The clusters defined by a section of the SAHN tree at the 7th level.  The cluster titles are descriptive, and 
the comments below the titles summarize the main common properties, observed manually, for the cluster 
members. 
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Cereal data,
 Classical MDS

 

Cereal data,
 Gradient descent from Classical MDS

 

Cereal data,     Tree Expansion

Fruits and Nuts

Fruit and Bran

Classic Cereals

Puffed and Agglomerated            

Hot cereals

Pure Bran

Fancy cereals

 
Figure 10: Rendering the cereal data by different algorithms: a. classical scaling (Young-Torgerson reduction); b. 
classical scaling followed by a gradient descent to minimize residual square error; c. expansion of the SAHN tree, 
applying gradient descent to adjust the configuration every time a point is split.  Notice how Classic cereals 
(rendered by green triangles) are dispersed when gradient descent takes classical scaling as an initial configuration, 
because that cluster overlaps another one which is more compact. This is a “mountain pass” effect, as is probably 
the isolation of two “dark diamond” points inside the cluster of “purple squares”.  In contrast, the tree expansion is 
relatively free of such effects. 



Spatially Expanding Hierarchical Trees 37 

Ramifications: 

 

The computations described here have just begun to explore a large set of possible variants. 

Only one type of tree was used (binary SAHN centroid tree).  It is likely that different types of 

trees are more efficient for different data sets.  Tree expansion does not have to be restricted to 

expanding binary trees; one can easily figure extensions of the method using any kind of tree.  

When computing time is not critical, we suggest expanding several candidate trees.   

 

In fact expanding a non-binary tree is equivalent to skipping a few stages of intermediary 

gradient descent in expanding a binary tree.  Such a strategy can be employed deliberately if 

computing power is at stake, or simply if it is known from the structure of the data that fewer 

stages of expansion are sufficient.  The archetypical example would in the situation of 

rendering known clusters, to first use tree expansion (or another algorithm) to place the cluster 

centroids, and then in one stage replace all centroids by the points of the corresponding cluster. 

 

One variant we considered and which occasionally yielded better results than reported for the 

main variant was not to consider the differences in centroid mass during the gradient descents. 

 

The simulations were limited to 2-D configurations, even though the algorithm applies also for 

uni-dimensional scaling (UDS).  The uniqueness of UDS stems from two peculiarities: first, the 

local minima problems of gradient descent are much worse in one dimension, and second, 

being in one dimension only facilitates a combinatorial approach (Defays 1978).  We believe 
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that for UDS, the best use of tree expansion will require its combination with heuristic 

combinatorial techniques.  The simplest example is to confine heuristic exploration to the group 

of permutations along the tree (the group generated by all transpositions of two direct offspring 

of the same node), which is a subgroup of only 2N out of the N! permutations of all points.  For 

large data sets, one could explore all tree-defined permutations only a few levels down from the 

current level.  For example, when expanding from four point to five, rather than select the 

immediate best configuration of 5 points (best out of two choices), one could consider all 16 

potentially resulting configurations of 8 points, then finalize the choice of the five point 

configuration to the configuration leading to the lowest 8–point stress.  In the application of tree 

expansion, as in other matters, UDS deserves a fully independent treatment, because of the 

facility with which it allows combinatorial schemes, and because of the connections between 

UDS and tree-building.   

 

Even for 2-D or 3-D configurations, tree expansion can be applied in conjunction with some 

random exploration of initial conditions space.  For example, one can replace the early part of 

expansion, placing the first P points by random exploration, and then expanding those nodes 

into a full configuration by normal tree expansion.  The configuration obtained by tree 

expansion at various steps can be used as one of the strains for a genetic algorithm—in  other 

problems requiring gradient descent, genetic algorithms (Goldberg 1989) have been efficient 

ways of cutting down the complexity of random exploration (Nolfi, Elman et al. 1994).   
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Tree expansion can also be combined with heuristic search by applying the heuristic at the level 

of tree-building.  For a tree built bottom-up (as SAHN trees are), some agglomeration choices 

are obvious and some are not.  By combining all the close calls into a family of alternate trees, 

one creates as many possible ways of seeking an optimal configuration. 

 

Finally, Tree Expansion may be combined with other strategies that can bias the rendering in 

favor of particular clusters.  The most prominent of these is to weight the contribution of 

different pairs of points in the gradient, in order to favor either the within-cluster or the 

between-cluster distances.  Because the good properties of tree expansion originate from setting 

a proper initial configuration, all others methods that do not rely on particular initial conditions 

should benefit from being used in conjunction with tree expansion.   

 

 

Summary and conclusion: 

 

This article suggests a new type of initial configuration to use for gradient descent 

multidimensional scaling algorithms such as Kruskal-Shepard.  Using a binary hierarchical tree 

of the points to scale, one can expand that tree in the final space, starting with the root and 

repeatedly replacing each node by its two successors; at each expansion one uses the gradient 

descent again to reshape the configuration.  Compared to applying gradient descent to the result 

of classical scaling, tree expansion is tidier, and more apt at keeping together points belonging 
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to the same cluster.  In particular, when the clusters tend to overlap, tree expansion can find 

significant representations whereas other methods fail.   

 

Besides our main result, the explorations made in this paper shed light on basic differences 

between metric and non-metric MDS, that users should keep in mind when they have a choice 

between both methods.  Metric MDS is more demanding; by doing gradient descent on the 

dissimilarities themselves it strives for perfection.  In comparison, non-metric MDS only strives 

for distances in the right order.  In the scope of our simulations, these differences twice caused 

finer results from metric MDS: first in that contingent structure of homogeneous data can be 

rendered significantly by metric MDS (Figure 6), but not by non-metric; and secondly, in the 

trade-off that metric MDS forces between finding a good stress and rendering structure (Table 

1).  The goal of the Kruskal-Shepard algorithm is as much finding the psychometric function 

relating dissimilarities to distances as it is to find those distances.  To make the Kruskal-

Shepard algorithm as demanding on the distances as metric MDS is, one would need to add 

constraints on the shape of the psychometric function, constraints that would make further 

demands than the simple monotonous regression.  In fact, there lies a continuum of algorithms 

from metric MDS, where the psychometric function is imposed to be identity, to the Kruskal-

Shepard algorithm, where it can take any monotonous shape.  For this reason, the choice 

between metric and non-metric MDS –or other intermediary algorithms—should be dictated not 

by convenience, but by what one expects the psychometric function to be. 
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The results presented here should be taken as the floor, not the ceiling, of tree expansion 

efficiency.  Firstly, there is no guarantee that type of tree used here was the best for the testing 

data.  Secondly, the data might not be the most difficult for the classical methods that we 

compared tree expansion to.  In our results, metric scaling of the dissimilarities followed by 

gradient descent fare quite well, always better than random initial conditions.  This is not the 

case for all possible problems; for example Arabie and Boorman (1973, p.160) report scaling 

configuration representing partitions for which CMS followed by non-metric gradient descent 

fared worse than random initial conditions.  In contrast to the metric scaling of similarities, tree 

expansion is a robust process, which we expect to degrade well with problem difficulty, its 

weakness being only the representative quality of the tree. 

 

By using tree expansion, classical metric and non-metric scaling becomes a field of application 

of hierarchical clustering, and the large existent corpus of clustering algorithms must be tested 

to find out which tree are the best candidates for expansion.   
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