CHI'94 « “ Celebrating Interdependence”

* Human Factors in Computing Systems

Multitrees:
Enriching and Reusing Hierarchical Structure

GeorgeW. Furnas and Jeff Zacks

Computer Science Research
Bell Communications Research
445 South Street, Morristown NJ, 07960

Tel: +1 (201) 829-4289
E-mail: gwf@bellcore.com

ABSTRACT

This paper introduces multitrees, a new type of structure for
representing information. Multitrees are a class of directed
acyclic graphs (DAGs) with the unusual property that they
have large easily identifiable substructures that are trees.
These subtrees have a natural semantic interpretation pro-
viding alternate hierarchical contexts for information, as
well as providing anatural model for hierarchical reuse. The
numerous trees found within multitrees also afford familiar,
tree-based graphical interactions.

KEYWORDS: Information graphs, representation, hierar-
chies, reuse, directed graphs, hypertext structures, graphical
browsers

INTRODUCTION - REPRESENTATION AND REUSE

Two motivations came together in thiswork. Thefirst wasa
long standing interest in finding structures for representing
information which might be richer than trees yet still view-
able and navigable. Treeshave along history in representing
information, from the Dewey Decimal system and tables of
contents of books, to their usein online information systems
and electronic document delivery systems such as Super-
book™3!, Trees have many strengths. They can be laid out
nicely in the plane, they allow simple complete traversal
agorithms, they offer a natural analog for the semantic
notions of abstraction and aggregation. Trees also have
weaknesses. They allow only one way to get from one node
to another so there can be no shortcuts, no alternative orga-
nizations. In contrast, the fully general graphs often used in
hypertext systems have complementary strengths and weak-
nesses. They allow many routes between things: cross refer-
ences, multiple organizing contexts, etc., but the structures
arenot easily laid out, users are easily lost and abstraction is
not well represented. Somewhere in between are directed
acyclic graphs (DAGs), whose directed links are constrained

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-

mercial advantage, the ACM copyright notice and the title of the pub-

lication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy oth-

erwise, or to republish, requires a fee and/or specific permission.
CHI94-4/94 Boston, Massachusetts USA
(c) 1994 ACM 0-89791-650-6/94/0330...$350

Tel: +1 (201) 829-4320

E-mail: zacks@bellcore.com

330

to have no cycles. DAGs were proposed a decade agom as
an aternative information access mechanism. Like trees,
the more general DA Gs can represent semantic notions of
abstraction: classes above subclasses, aggregations above
subparts. The network of | SA relations of aknowledge base
(“adog ISA carnivore”) and the rich multiple inheritance
structures of object oriented systems form DA Gs that capi-
talize on this semantics. For information access, these
structures support a top down search strategy like trees, a
natural orientation and abstraction mechanism. A problem
with DAGs, however, isthat like general graphs, they are
perhaps underconstrained. In particular, they can be quite
difficult to lay out and comprehend. Even small neighbor-
hoods can easily be non-planar causing many edge cross-
ingsin viewers. (See[® for a discussion of some of these
topological issues and their implications for interfaces.)

Our first motivation, then, was the question: are there any
other places of interest along this spectrum of structure
from trees to graphs? In particular, there might be a class of
structures in between trees and DAGs, that could at least
offer new optionsin the design space for information repre-
sentation.

Our second, very concrete motivation came from issues of
reuse of hierarchical structure. Under a company-wide ini-
tiative huge collections of documentation were being
assembled into alarge online information resource. The
whole assembly formed a great tree of information, with
some hierarchy imposed to organize the collection of docu-
ments at the higher levels, and lower levels of structure
coming from within the documents themselves. This struc-
turing reflected a tentative acceptance of the advantages of
the tree approximation of the universe, with its comparative
comprehensibility, viewability, and navigability. Individual
users, however, were having two sorts of difficulties. For
one, the fixed structure of the tree organizing the documen-
tation was indeed not suitable for everyone. As aresult
some aternative hierarchical organizations of the docu-
mentation were made available. Secondly users had trouble
with the scale of this aggregate structure. They wanted
smaller views, to allow quick access to those parts of the
large tree that they needed for their tasks. Some devices
were created to allow usersto personalize their views of the
database. They could collect documents on a virtua “book-
shelf” and compile sets of pointersto document sections
into lists of “bookmarks.” Note however that both of these

Boston, Massachusetts USA « April 24-28, 1994

Human Factorsin Computing Systems

techniques collect fragments of the existing structure only
into unstructured lists. One might easily imagine users want-
ing to organi ze these sets of fragmentsinto their own private
trees, to suit their own purposes. Thus these two problems
and their solutions have in common the notion of alowing
fragments of some existing tree to be reused, reorganized
into new trees. This simpleideaturns out to have intriguing
consequences.

This paper explores those consegquences by introducing a
new class of structures called multitrees. We will first illus-
trate the idea of a multitree with a concrete construction sce-
nario. We will then explore some of the formal properties of
such structures, particularly propertiesrelevant to interfaces,
and illustrate them with sample views from prototype
browsers we have built. Then we will question and discuss
the constraints imposed by multitrees, finishing with a gen-
eral discussion.

AN INITIAL EXAMPLE: MULTITREES AND THE COLLEGE
PROFESSOR

Reuse of hierarchical structureis not new. It occurs, for
example, whenever a college professor creates a structured
syllabus of readings for her course. Instead of writing a new
document from scratch, she selects fragments from the
existing body of literature. For the purposes here we let that
body of literature be represented by agreat tree, with organi-
zation at higher levels coming from, for example, the
Dewey Decimal system or the Library of Congress classifi-
cation system, and the lower levels from the internal hierar-
chical structure of chapters and sections within documents.
From thislarge tree (Figure 1(i)), Professor A pieces
together her own structure of course readings: a book from
here, a chapter from there, a section from somewhere else,
perhaps even afew short volumes from somewhere. Con-
sider her new structure along with the original tree (Figure
1(ii)). What she has done isto select nodes from the original
structure, together with their dependent subtrees, and spin a
new hierarchical superstructure, anew tree, above those
pieces. A second professor, B, could build another such
structure, perhaps even using whole pieces from A's sylla-
bus, or writing and including entirely new tree fragments.
The only constraint is that each syllabus be atree, i.e,, it
must start from disjoint tree fragments, and assemble them
together into some new hierarchy.

The resulting overall structure we call amultitree. It hasthe
unusual property that although it is not atree, the descen-
dents of any node form atree. Thus familiar tree presenta-
tion and navigation techniques may be used to view large
fragments of the structure. Perhaps one of the simplest
examples of such a structure is when one has two trees shar-
ing the same set of leaves, for example the Dewey Decimal
and Library of Congress classification systems for books.
General multitrees, however, may share compl ete subtrees,
not just leaves. (By complete subtree we mean a node and
all its descendents). That is, hierarchical structure can be
shared at multiple granularities.

In hierarchical reuse, more can be shared than just the text
itself. Joel Remde (personal communication) has been
exploring the use of hierarchical indices for huge simple
hierarchies of text. Each node in the ssimple tree structure

331

has an associated index indicating for each word which
immediate descendent node represents a text segment con-
taining that word. One follows achain of such pointersfrom
index to subindex to find actual occurrencesin the leaves.
There are various advantages for updating, distributing the
database, limiting the scope of searches, and displaying high
level results against views of the hierarchy. In multitrees,
such hierarchical indices can be shared as well. When Pro-
fessor A includes a chapter in her syllabus, she gains access
to theindex for that chapter as well.

Multi-trees are DAGs, not trees, and asaresult anodein the
structure can have multiple parents. In fact it can therefore
have multiple ancestral lineages: one for each tree that
(re)used it. Thus looking upward from a node one can see
the diverse hierarchical contextsin which the node has
appeared. So, whereas looking downward one sees the vari-
ous contents under a node (subsection 1, subsection 2, etc.),
looking upward one sees its alternative contexts (as a chap-
ter in Treel, as Part 1b of Professor A’s course, etc.)

There are several further uses for these multiple contexts.
For example they can support a special kind of browsing.
Suppose Professor A teaches a course on algorithms and
includes a particular paper in her syllabus. Using the global

Tree; of Information

(i)
(i) Professor A
Book
(iii) Professor B

N

Figure 1. Constructing a multitree - an example.
Beginning with an initial tree of information,
Professor A builds her course syllabus. In (a) she
chooses a disjoint set of complete subtrees and adds
new tree structure above them. Similarly, Professor B
makes another, chooses fragments, including some
of A’'s and some completely new ones, and builds a
tree above to organize them.

Sl
R

CHI’94 * * Celebrating Interdependence”

* Human Factors in Computing Systems

X

N
/

y
.\

3
N

Figure 2 . Diamonds are not permitted in a multitree.
A diamond occurs when two distinct directed paths

occur between a pair of nodes. Thus in a multitree at
most one directed path can exist between two nodes.

structure, she may ook upward from that paper to find some
other syllabus which also used that paper, move to the con-
text of that syllabus and browse within it to get ideas of
other papers to assign.

Contexts can & so be used for conditional inheritance. One
could, for example, make the presentation style of anode be
conditional on the selection of aparticular context. Thusin
Figure 1 one would select for viewing not just some particu-
lar chapter sized unit of text, but also indicate the context in
which it is being viewed (e.g., Professor A's course). The
formatted look and feel of the segment of text would bein
part inherited from the selected context and altered accord-
ingly. Thus material is reused but can be modified by the
structural context.

These comments on multiple parents and their interpretation
as contexts would apply to general DAGs as well. One dif-
ferenceis that the contexts (i.e., ancestor nodes) all have
simple hierarchies beneath them. Thuslooking upwards one
seesin effect a choice, not of arbitrary ancestral nodes, but
of possible trees to be browsed. Thereisin fact specia
structure to this set of choices, arising from a structural dual-
ity in multitrees, to which we turn now.

/.

DIAMONDS, DUALITY AND TREES ALL OVER

There are several ways to define the class of multitrees, two
of which have been given so far. One was procedural, based
on building new trees above digoint tree fragments. A
resulting declarative characterization was that multitrees are
DA Gs whose nodes have descendents forming only trees. A
new formulation equivalent to thislast isto say that these
DAGs have no downward diamonds. A downward diamond
is formed when two downward paths diverge from some
node, x, and meet again some node, y, below (see Figure 2).
Clearly if such adiamond exists, then the descendents of x
do not form atree, and if no such diamond exists they do.
Thisformulation isinteresting because it iswhat is called
self-dual, that isit also holds for the linksin the DAG con-
sidered in the other direction: there are no downward dia
mondsiff there are no upward diamonds. Thisin turn hasthe
rather surprising consequence that not only does the set of
descendents of any node form atree, the set of its ancestors

332

also form atree (an inverted tree). Several such trees can be
seen in Figure 1(iii), starting at aleaf and following paths
upward that bifurcate to reach different roots. In summary,

Proposition 1. The following properties are equivalent:

(a) The DAG can be constructed by adding new tree struc-
ture above existing (or newly added) disjoint complete
subtrees.

(b) The descendents of any node form a tree.
() The DAG isdiamond free.
(d) The ancestors of any node form an inverted tree

Any DAG satisfying these conditionsis called a multitree.

In thislight it isinteresting to note that geneal ogies, though
often called “family trees’, arein fact not trees at all. Except
for intermarriage, which would introduce diamonds, they
are multitrees. The property just derived makes sense of the
fact that agiven individual hasboth atree of ancestorsand a
tree of descendants within the structure. In fact we have
found it a useful exercise to represent our own family gene-
aogies with these multitrees, and to test our browsers on
them.

For information representation, Proposition 1 means that
looking down from any node in the structure one sees atree
of contents, and looking up one sees atree of contexts. As
mentioned already, each of the ancestral contextsitself roots
adownward tree. Thus, although the structure itself isnot a
tree, and not planar in general, it hasremarkably large easily
identifiable and semantically coherent subsets that are trees,
and hence are planar, and amenable to easy layout.

In fact the ubiquity of treesin this structure goes even fur-
ther. So far, the word “tree” has been used in the common
computer science sense of rooted tree (with directed links
always pointing away from the root). Following the com-
mon graph-theoretic sense of tree, we will say that an un-
directed graph iswhat we shall call here a“topological tree’
or “t-tree” iff it is a connected graph without cycles. T-trees
are important since they too are always planar, and alow
nice layouts and familiar browsers. Note that though multi-
trees have no diamonds (a condition on their directed links),
when considered undirected they do have cycles (e.g., in
Figure 1(ii), the cycle from Book to ProfessorA to Volumes
to the Treey root back to Book), and so they are not topolog-
ical trees. Yet multitrees do have large topological trees
within them, as described in the following proposition. Let
ussay x 2y iff xisabovey in the DAG.

Proposition 2. Consider any two nodes x 2y in a multitree,
and the necessarily unique path connecting them. The
union of all the ancestors of this path and all the descen-
dents of this path is a topological tree.

Thisresultisillustrated in Figure 3 and has several practical
applications for making useful graphical interfaces for mul-
titrees. We consider some of these in the next section, with
illustrations from screendumps of our prototype browsers
written in Tk/Tcl.

VIEWING AND BROWSING MULTITREES

First consider when x=y. Then we have the simple case of
showing simultaneously the tree of descendent contents and
the tree of ancestral contexts for an individual node. We call

Boston, Massachusetts USA « April 24-28, 1994

Human Factorsin Computing Systems

Figure 3 . Proposition 2 illustrated. Two nodes in a
multitree, the unique path connecting them, and all
the descendents and ancestors of this path together
are guaranteed to form a topological tree.

thisacentrifugal view of the structure, because it tollows

linksin the direction away from some central point of focus.

Figure 4 shows our browser’s centrifugal view of a dataset
of local Bellcore information. This data set was drawn from
a database maintained on our local file system at Bellcore.
Users deposit useful information in aparticular directory on
an ad hoc basis. Anyone with an account is free to add or
reorganize material. People have posted material related to
corporate practices, life in Northern New Jersey, practical
information such as directions, and diatribes on art. To cre-
ate the multitree shown in these figures, the authors and one
volunteer created new hierarchical organizations (trees) that

used varying amounts of the pre-existing structure (the
“original” tree from thefile system). In Figure 4, the central
highlighted cell islabeled “ Directions.” Looking down from
the “Directions’ node (to the right in this layout) we see the
tree of filesrelating to how one travels to and from various
Bellcore locations and related places. Looking up from
“Directions’ (to the left) we seethat “Directions’ isa
descendent of the original tree and of the three post hoc clas-
sifications. Proposition 2 guarantees that both the upward
and downward views are trees and that they can be shown
simultaneously assingle larget-tree. (Note that a centrifugal
view may be truncated at any desired radius.)

An interesting consequence of Proposition 2 isthat transi-
tions between centrifugal views can be animated nicely.
Consider browsing over multitrees using a centrifugal
viewer and moving the focus around one link at time, say
from node a to neighboring node b. In such acase, if aand b
are adjacent, then one is above the other, and Proposition 2
applies, meaning that the union of the old and new viewsis
in fact at-tree, and can be displayed together in 2-D. This
alows a nice animation option, showing the transition by
first adding the new material, showing both together, then
deleting the old.

A third consequence of proposition 2 isfor presenting vari-
ous kinds of fisheye views of multitrees. Furnast®(¥ intro-

1. In practice there is some subtlety in that one might also want
layouts to respect sibling order and direction of links (e.g., parents
to the left of children).

convent

[orer s ——— (o

Figure 4 . Centrifugal view of the multitree built upon our /usr/public/info information repository. The view is
centered on the node called “Directions” and shows the tree of ancestors (to the left) and the tree of descendents

(to the right) of this node.

Sl
R

CHI’94 * * Celebrating Interdependence”

* Human Factors in Computing Systems

duced a notion of generalized fisheye views that tried to
obtain a balance of local detail and global context. For sim-
pletreesit generated a schemethat assigned greatest interest
to the ancestral lineage of afocal node, and next interest to
nodes one link off that lineage, etc. A similar strategy is pos-
sible for multitrees and only requires that one specify not
just afocal content node but afocal context node as
well.Thus, for example, one could specify not just aleaf (as
the focal content), but also aroot (as focal context). The
root selectsatree, and then an ordinary tree fisheye view
can be generated. In the world of multitrees, however, there
are afew new twists. For example one can shift around not
only the leaf focus, but also the root focus, slowly changing
contexts. A second interesting twist arises from the fact that
just asthereisatree of contentsfrom any chosen root, there
isalso aninverted tree of contexts looking upward from any
leaf. Thusthisinverted tree can also be viewed with a fish-
eye viewer -- so two fisheye views are possible for any cho-
sen focal -context/focal -content pair.

Figure 5 shows a coordinated pair of first-order fisheye
views for the same Bellcore information structure shown in
Figure 4. The context focus is on one of the post-hoc organi-
zations of the database and the content focus on the “ Direc-
tions,” both described above. The nodesin the lineage
connecting them appear in black, therest in gray. In the | eft
pane we see the fisheye view of descendent trees; in the
right view, the fisheye view of ancestor trees. There are pure
indent-based layouts of both of these trees. Ordinary indent-
ing used in familiar outlines is possible for the tree of
descendents (atypical fisheye outline view). A complemen-
tary “outdenting” structure can be used for the tree of ances-
tors. Thislatter view takes getting used to so we have

explicitly also drawn in the tree links to these views to make
the structure more apparent.

Thanks to Proposition 2 it is possible to make asingle view
which shows both fisheye views at once: the lineage con-
necting a selected leaf and selected root, together with
immediate ancestors and descendents of that lineage. Pretty
versions of this, however, require one to be able to permute
the ordering of branches, asisthe case for the geneal ogy
shown in Figure 6.

PROBLEMS AND SOME SOLUTIONS

Like other points on the spectrum of structural complexity
from trees to graphs, multitrees have their own limitations.
In this section we discuss some of these and related prob-
lems, as well as some strategies for working around them.

If diamonds are forever...

Multitrees are essentially defined by the absence of dia-
monds. Thisis astrong requirement and deserves more dis-
cussion. The existence of asingle downward path from a
node to adescendent isafamiliar constraint on simpletrees.
It is a constraint we have often learned to live with, reflect-
ing the ideal that the structureis at each level a partition.
The tree successively refines the disjoint categorization of
the world. If thisideal has merit then multitree structures
offer auseful extension -- merely providing afamily of
aternative classificationsin asingle structure. (In fact, asit
turned out from Proposition 1(c), tree-structured families of
such classifications.)

Diamonds, however will not always go away. There are sev-
eral circumstances under which we might want to consider

User JMZ

New Jersey

Directions

Figure 5. Coordinated pair of first order fisheye views. Both views are defined by a focal-context, focal-content
pair, here “User JMZ" and “Directions”. The view on the left is a simple tree fisheye view of the downward tree of
contents rooted at the context “User JMZ”. It shows the ancestral lineage linking the focal-context and the focal-
content, and the first-order descendents of the lineage. The view on the right is a similar tree fisheye view of the
inverted tree of contexts rooted at the content “Directions”. It too shows the ancestral lineage linking the focal-
context and the focal-content, but this time with the first-order ancestors (contexts) of the lineage.

Boston, Massachusetts USA « April 24-28, 1994

Sl

Human Factorsin Computing Systems

relaxing the diamond-free constraint. One case comes
directly from the simpler world of trees, where from timeto
time, people want to put the same item in more than one
place in the tree. Such violations of tree structure introduce
diamonds and would similarly violate multitree structure. If
diamonds are infrequent, we believe, this can be handled as
with trees: The fundamental tree or multitree ideal is pre-
served, and some small exceptions are made, e.g., by virtual
duplication of nodes. Furthermore if diamonds are long, as
is often the case, then the structures are still locally multi-
trees, and local views will till behave ideally.

A more systematic problem arises when one has an internal
node below which one would like to offer a choice of orga-
nization for descendents. For example one might have a
subset of documents to be organized for access both apha-
betically and by date. A whole suite of diamonds would
begin at this hode, and end at each of the cross-classified
documents. For such cases, one might consider a new class
of structures sightly more general than multitrees but from
which sub-multitrees can be easily extracted. One would
just need away to break the diamonds in a systematic way
to generate tree views as needed. For example, suppose any
such node would be flagged (e.g., colored red) to indicate
that its children offer two alternative breakdowns of its
descendents, and that one must be chosen to preserve tree
structure, and a default used in any needed view. A particu-
larly clean version of thiswould require that its children
realy all have the same descendents, so that the semantics

Kl

of the flagged node would be un-altered by the choice of
subsequent classification.

A related problem concerns the organization of roots. In par-
ticular, it will be noted that there is no top-down structure
over the set of roots (e.g., in Figure 1(iii)). It should be
remembered, however, that the various contexts (including
the various roots) can indeed be browsed, not top-down but
from the bottom up, from the point of view of a particular
focal content. If one wants to guarantee a view of all roots
one could introduce an artificial leaf, descendent from all
roots, whose upward view by design is therefore atree con-
taining all those roots.

In the end, of course, if hierarchical partitionisrare, and
partial overlap and random interconnection is the rule, then
neither trees nor multitrees will be appropriate, and one
needs to move back in the direction of general DAGs for
representation, paying the corresponding price in complicat-
ing the interface.

Viewing the whole structure

For some applications a view of a non-tree portion of amul-
titree (e.g., the entire multitree) may be desirable. This
might arise in particular when building on an existing multi-
tree and wanting to take fragments from different subtrees,
or perhaps in some unusual browsing situations. The fact
that multitrees are not generally planar presents achallenge,
and the problem becomes similar to one of general DAG
visualization and browsing. A 3-dimensional layout may be

Edward, 1767- 1861
Victoria, 1786-1861

Victoria, 1819-1901

Al bert, 1819-1861

Victoria, 1840-1901
Alice, 1843-78

Al fred, 1844-1900
Hel ena, 1844-1900
Loui se, 1848-1939
Art hur, 1850-1942
Leopol d, 1853-84
Beatrice, 1858-1944

Edward VI |,

1841-1910

Al exandra, 1844-1925

Al bert Victor, 1864-92
Loui se, 1867-1931
Victoria, 1868-1935
Maud, 1869- 1938

George V, 1865-1936

AN

Mary, 1867-1953

Edward VI 1|, 1894-1972
Mary, 1897-1965

Henry, 1900-74

Ceor ge, 1902-42

John, 1905-19

George VI 1895-1952

El i zabet h, 1900-

Mar gar et Rose, 1930-

>
-
el

Eli zabeth 1,

\

1926-

Charl es, 1948-
Anne, 1950-

Andr ew, 1960-
Edwar d, 1964-

Figure 6 . Integrated fisheye view for aroyal genealogy. This view shows both upward and downward fisheye views
at once, i.e., the ancestral lineage (from Queen Victoria to Queen Elizabeth 1), as well as both first order ancestors

and first order descendants of that lineage.

335

CHI’94 * * Celebrating Interdependence”

* Human Factors in Computing Systems

best for this, with adjacent nodes placed near each other, and
the direction of links preserved in the layout. Multitrees may
alow specia 3-D arrangements, since whole tree portions
of interest may be assigned to their own planesin the struc-
ture.

Reuse out of context

Thereis aproblem that always arisesin reuse, no less for
hierarchical structure and multitrees. That is, fragments
composed in one specific context may not work well out of
that context. This problem comes up in code reuse, where
special discipline is needed to design and encapsul ate mod-
ules so that they may be called from various contexts. In text
systems fragments can contain anaphora, explicit reference
to other sections, conceptual prerequisites, etc. al of which
areresolved in awell written linear text. This has always
caused problems for hypertext, where fragments may be
encountered in various orders. The typical solutionisto try
to write fragments that stand alone, leading to an often jerky
style.

For hierarchical reuse, the problem would be that a new tree
assembled from fragments taken from elsewhere would not
hang together well. The individual readings in a professor’s
course, just plucked out and glued together, might well lack
establishing context and smooth transitions. There are two
strategies however that should greatly ameliorate the prob-
lem. Thefirst isto admit that some pointsin an existing
structure might be more suitable candidates than others for
reuse, and make the most use of those pieces that have less
external dependency. The second isto note that new trees
built in the structure can introduce newly created fragments.
Thusit is quite possible to include new ad hoc fragments
that can provide the segues and contexts for the old pieces
that are being reused. A nice feature of this solution is aso
that these new fragments are automatically specifically asso-
ciated with the new contextual organizationin whichtheold
fragments now appear.

Constructing Multitrees

Constructing multitrees, like building structure in general,
presents a challenge. Perhaps one of the most reliable ways
to construct good multitreeswill be asin our initial example
of professors setting up courses, i.e., by hand. It isintrigu-
ing, however to consider automatic methods that might try
build multitrees from some pre-existing resources. For
example, multitrees may be implicit in particular instances
of more general graphs. Botafogo et al. I have presented an
algorithm for finding trees within general hypertext graphs,
based on the number of linksinto and out of anode (aroot is
defined to be a node that can reach everY, or nearly every,
node in the hypertext). The IGD system 4 allowed usersto
build such trees by hand on top of an existing DAG. If one
could use such techniques to identify several treeswithin a
hypertext, and then join them together, thiswould produce a
multitree.

CONCLUSIONS

The principal contribution of multitreesis asanew coherent
point on the structural continuum from treesto general
graphs. Like all other points on that spectrum, they have

336

their strengths and weaknesses, both in their graphical and
semantic capabilities. Aswith DAGsin general, showing a
whole multitree can be difficult, but large meaningful frag-
ments can be shown as simple trees. Multitrees have natural
notions of content and context, and seem appropriate for
cases of reuse of hierarchical structure. Their appropriate-
nessfor more general representation (e.g., knowledge bases,
or object oriented class systems) is an open question, but
still they may provide a useful approximation just as trees
sometimes do. For example Creech, et al.[? have imple-
mented a hypertext system for software reuse based on
DAGs. It would be interesting to see if multitrees could
serve aswell. Even if multitrees are too constraining, it is
possible that they can form a distinguished backbone, with
other types of links serving to complete the structure. Thus
the tree pieces can be used for some viewing and navigation
purposes, and abandoned as needed.

Acknowledgments

We would like to thank Susan Dumaiss, Jakob Nielsen, and
Scott Stornetta and Henri Weinberg for variously trying the
browsers and reading drafts of this paper.

REFERENCES

[1] Botafogo, R.A., Rivlin, E., Schneiderman, B., Struc-
tural analysis of hypertext: identifying hierarchies and
useful metrics, ACM Transactions on Information Sys-
tems, 10(2), 1992, 142-180.

Creech, M. L., Freeze, D. F,, Griss, M. L., Using
hypertext in selecting reusable software components,
Hypertext’ 91Proceedings, ACM, 25-38, 1991.

Egan, D. E., Remde, J. R., Landauer, T. K., Lochbaum,
C.L.,and Gomez, L. M., Behavioral Evaluation and
Analysisof aHypertext Browser, Proceedings of ACM
CHI’ 89 Conference on Human Factors in Computing
Systems 205-210, 1989.

Feiner, S. (1988). Seeing the forest for the trees: Hier-
archical display of hypertext structure. Proc. ACM
Conf. Office Information Systems (Palo Alto, CA, 23-
25 March), 205-212.

Furnas, G. W., The FISHEY E view: A new look at
structured files. Bell Laboratories Technical Memo-
randum, 1982.

Furnas, G. W., Generalized fisheye views. Human
Factorsin Computing Systems CHI ‘86 Conference
Proceedings, Boston, April 13-17, 1986, 16-23.

Landauer, T. K., Dumais, S. T., Gomez, L. M., & Fur-
nas, G. W., Human factors in data access. Bell System
Technical Journal, (Special Issue on Data Bases), 61,
1982, pp. 2487-2509. Reprinted in: Journal of Infor-
mation and I mage Management. September, 1983, Vol
16(9), pp. 18-29.

Parunak, H. Van Dyke, Hypermediatopologies and
user navigation, Hypertext’' 89 Proceedings, ACM, 43-
50, 1989.

(2]

(3]

[4]

(5]

(6]

(8]

