
Human Factors in Computing Systems CHI’94 • “Celebrating Interdependence”

330

ABSTRACT

This paper introduces multitrees, a new type of structure for
representing information. Multitrees are a class of directed
acyclic graphs (DAGs) with the unusual property that they
have large easily identifiable substructures that are trees.
These subtrees have a natural semantic interpretation pro-
viding alternate hierarchical contexts for information, as
well as providing a natural model for hierarchical reuse. The
numerous trees found within multitrees also afford familiar,
tree-based graphical interactions.

KEYWORDS: Information graphs, representation, hierar-
chies, reuse, directed graphs, hypertext structures, graphical
browsers

INTRODUCTION - REPRESENTATION AND REUSE

Two motivations came together in this work. The first was a
long standing interest in finding structures for representing
information which might be richer than trees yet still view-
able and navigable. Trees have a long history in representing
information, from the Dewey Decimal system and tables of
contents of books, to their use in online information systems
and electronic document delivery systems such as Super-
booktm[3]. Trees have many strengths. They can be laid out
nicely in the plane, they allow simple complete traversal
algorithms, they offer a natural analog for the semantic
notions of abstraction and aggregation. Trees also have
weaknesses. They allow only one way to get from one node
to another so there can be no shortcuts, no alternative orga-
nizations. In contrast, the fully general graphs often used in
hypertext systems have complementary strengths and weak-
nesses. They allow many routes between things: cross refer-
ences, multiple organizing contexts, etc., but the structures
are not easily laid out, users are easily lost and abstraction is
not well represented. Somewhere in between are directed
acyclic graphs (DAGs), whose directed links are constrained

Multitrees:
Enriching and Reusing Hierarchical Structure

George W. Furnas and Jeff Zacks

Computer Science Research
Bell Communications Research

445 South Street, Morristown NJ, 07960
Tel: +1 (201) 829-4289 Tel: +1 (201) 829-4320

E-mail: gwf@bellcore.com E-mail: zacks@bellcore.com

to have no cycles. DAGs were proposed a decade ago[7] as
an alternative information access mechanism. Like trees,
the more general DAGs can represent semantic notions of
abstraction: classes above subclasses, aggregations above
subparts. The network of ISA relations of a knowledge base
(“a dog ISA carnivore”) and the rich multiple inheritance
structures of object oriented systems form DAGs that capi-
talize on this semantics. For information access, these
structures support a top down search strategy like trees, a
natural orientation and abstraction mechanism. A problem
with DAGs, however, is that like general graphs, they are
perhaps underconstrained. In particular, they can be quite
difficult to lay out and comprehend. Even small neighbor-
hoods can easily be non-planar causing many edge cross-
ings in viewers. (See [8] for a discussion of some of these
topological issues and their implications for interfaces.)

Our first motivation, then, was the question: are there any
other places of interest along this spectrum of structure
from trees to graphs? In particular, there might be a class of
structures in between trees and DAGs, that could at least
offer new options in the design space for information repre-
sentation.

Our second, very concrete motivation came from issues of
reuse of hierarchical structure. Under a company-wide ini-
tiative huge collections of documentation were being
assembled into a large online information resource. The
whole assembly formed a great tree of information, with
some hierarchy imposed to organize the collection of docu-
ments at the higher levels, and lower levels of structure
coming from within the documents themselves. This struc-
turing reflected a tentative acceptance of the advantages of
the tree approximation of the universe, with its comparative
comprehensibility, viewability, and navigability. Individual
users, however, were having two sorts of difficulties. For
one, the fixed structure of the tree organizing the documen-
tation was indeed not suitable for everyone. As a result
some alternative hierarchical organizations of the docu-
mentation were made available. Secondly users had trouble
with the scale of this aggregate structure. They wanted
smaller views, to allow quick access to those parts of the
large tree that they needed for their tasks. Some devices
were created to allow users to personalize their views of the
database. They could collect documents on a virtual “book-
shelf” and compile sets of pointers to document sections
into lists of “bookmarks.” Note however that both of these

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy oth-
erwise, or to republish, requires a fee and/or specific permission.

CHI94-4/94 Boston, Massachusetts USA

(c) 1994 ACM 0-89791-650-6/94/0330...$350

331

Boston, Massachusetts USA • April 24-28, 1994 Human Factors in Computing Systems

techniques collect fragments of the existing structure only
into unstructured lists. One might easily imagine users want-
ing to organize these sets of fragments into their own private
trees, to suit their own purposes. Thus these two problems
and their solutions have in common the notion of allowing
fragments of some existing tree to be reused, reorganized
into new trees. This simple idea turns out to have intriguing
consequences.

This paper explores those consequences by introducing a
new class of structures called multitrees. We will first illus-
trate the idea of a multitree with a concrete construction sce-
nario. We will then explore some of the formal properties of
such structures, particularly properties relevant to interfaces,
and illustrate them with sample views from prototype
browsers we have built. Then we will question and discuss
the constraints imposed by multitrees, finishing with a gen-
eral discussion.

AN INITIAL EXAMPLE: MULTITREES AND THE COLLEGE
PROFESSOR

Reuse of hierarchical structure is not new. It occurs, for
example, whenever a college professor creates a structured
syllabus of readings for her course. Instead of writing a new
document from scratch, she selects fragments from the
existing body of literature. For the purposes here we let that
body of literature be represented by a great tree, with organi-
zation at higher levels coming from, for example, the
Dewey Decimal system or the Library of Congress classifi-
cation system, and the lower levels from the internal hierar-
chical structure of chapters and sections within documents.
From this large tree (Figure 1(i)), Professor A pieces
together her own structure of course readings: a book from
here, a chapter from there, a section from somewhere else,
perhaps even a few short volumes from somewhere. Con-
sider her new structure along with the original tree (Figure
1(ii)). What she has done is to select nodes from the original
structure, together with their dependent subtrees, and spin a
new hierarchical superstructure, a new tree, above those
pieces. A second professor, B, could build another such
structure, perhaps even using whole pieces from A’s sylla-
bus, or writing and including entirely new tree fragments.
The only constraint is that each syllabus be a tree, i.e., it
must start from disjoint tree fragments, and assemble them
together into some new hierarchy.

The resulting overall structure we call a multitree. It has the
unusual property that although it is not a tree, the descen-
dents of any node form a tree. Thus familiar tree presenta-
tion and navigation techniques may be used to view large
fragments of the structure. Perhaps one of the simplest
examples of such a structure is when one has two trees shar-
ing the same set of leaves, for example the Dewey Decimal
and Library of Congress classification systems for books.
General multitrees, however, may share complete subtrees,
not just leaves. (By complete subtree we mean a node and
all its descendents). That is, hierarchical structure can be
shared at multiple granularities.

In hierarchical reuse, more can be shared than just the text
itself. Joel Remde (personal communication) has been
exploring the use of hierarchical indices for huge simple
hierarchies of text. Each node in the simple tree structure

has an associated index indicating for each word which
immediate descendent node represents a text segment con-
taining that word. One follows a chain of such pointers from
index to subindex to find actual occurrences in the leaves.
There are various advantages for updating, distributing the
database, limiting the scope of searches, and displaying high
level results against views of the hierarchy. In multitrees,
such hierarchical indices can be shared as well. When Pro-
fessor A includes a chapter in her syllabus, she gains access
to the index for that chapter as well.

Multi-trees are DAGs, not trees, and as a result a node in the
structure can have multiple parents. In fact it can therefore
have multiple ancestral lineages: one for each tree that
(re)used it. Thus looking upward from a node one can see
the diverse hierarchical contexts in which the node has
appeared. So, whereas looking downward one sees the vari-
ous contents under a node (subsection 1, subsection 2, etc.),
looking upward one sees its alternative contexts (as a chap-
ter in Tree1, as Part 1b of Professor A’s course, etc.)

There are several further uses for these multiple contexts.
For example they can support a special kind of browsing.
Suppose Professor A teaches a course on algorithms and
includes a particular paper in her syllabus. Using the global

Figure 1 . Constructing a multitree - an example.
Beginning with an initial tree of information,
Professor A builds her course syllabus. In (a) she
chooses a disjoint set of complete subtrees and adds
new tree structure above them. Similarly, Professor B
makes another, chooses fragments, including some
of A’s and some completely new ones, and builds a
tree above to organize them.

(ii)

(iii)

Professor A

Professor B

Volumes

Book Chpt Sect

Tree1 of Information

Tree1

(i)

Human Factors in Computing Systems CHI’94 * “Celebrating Interdependence”

332

structure, she may look upward from that paper to find some
other syllabus which also used that paper, move to the con-
text of that syllabus and browse within it to get ideas of
other papers to assign.

Contexts can also be used for conditional inheritance. One
could, for example, make the presentation style of a node be
conditional on the selection of a particular context. Thus in
Figure 1 one would select for viewing not just some particu-
lar chapter sized unit of text, but also indicate the context in
which it is being viewed (e.g., Professor A’s course). The
formatted look and feel of the segment of text would be in
part inherited from the selected context and altered accord-
ingly. Thus material is reused but can be modified by the
structural context.

These comments on multiple parents and their interpretation
as contexts would apply to general DAGs as well. One dif-
ference is that the contexts (i.e., ancestor nodes) all have
simple hierarchies beneath them. Thus looking upwards one
sees in effect a choice, not of arbitrary ancestral nodes, but
of possible trees to be browsed. There is in fact special
structure to this set of choices, arising from a structural dual-
ity in multitrees, to which we turn now.

DIAMONDS, DUALITY AND TREES ALL OVER

There are several ways to define the class of multitrees, two
of which have been given so far. One was procedural, based
on building new trees above disjoint tree fragments. A
resulting declarative characterization was that multitrees are
DAGs whose nodes have descendents forming only trees. A
new formulation equivalent to this last is to say that these
DAGs have no downward diamonds. A downward diamond
is formed when two downward paths diverge from some
node, x, and meet again some node, y, below (see Figure 2).
Clearly if such a diamond exists, then the descendents of x
do not form a tree, and if no such diamond exists they do.
This formulation is interesting because it is what is called
self-dual, that is it also holds for the links in the DAG con-
sidered in the other direction: there are no downward dia-
monds iff there are no upward diamonds. This in turn has the
rather surprising consequence that not only does the set of
descendents of any node form a tree, the set of its ancestors

Figure 2 . Diamonds are not permitted in a multitree.
A diamond occurs when two distinct directed paths
occur between a pair of nodes. Thus in a multitree at
most one directed path can exist between two nodes.

x

y

also form a tree (an inverted tree). Several such trees can be
seen in Figure 1(iii), starting at a leaf and following paths
upward that bifurcate to reach different roots. In summary,

Proposition 1. The following properties are equivalent:

(a) The DAG can be constructed by adding new tree struc-
ture above existing (or newly added) disjoint complete
subtrees.

(b) The descendents of any node form a tree.
(c) The DAG is diamond free.
(d) The ancestors of any node form an inverted tree

Any DAG satisfying these conditions is called a multitree.

In this light it is interesting to note that genealogies, though
often called “family trees”, are in fact not trees at all. Except
for intermarriage, which would introduce diamonds, they
are multitrees. The property just derived makes sense of the
fact that a given individual has both a tree of ancestors and a
tree of descendants within the structure. In fact we have
found it a useful exercise to represent our own family gene-
alogies with these multitrees, and to test our browsers on
them.

For information representation, Proposition 1 means that
looking down from any node in the structure one sees a tree
of contents, and looking up one sees a tree of contexts. As
mentioned already, each of the ancestral contexts itself roots
a downward tree. Thus, although the structure itself is not a
tree, and not planar in general, it has remarkably large easily
identifiable and semantically coherent subsets that are trees,
and hence are planar, and amenable to easy layout.

In fact the ubiquity of trees in this structure goes even fur-
ther. So far, the word “tree” has been used in the common
computer science sense of rooted tree (with directed links
always pointing away from the root). Following the com-
mon graph-theoretic sense of tree, we will say that an un-
directed graph is what we shall call here a “topological tree”
or “t-tree” iff it is a connected graph without cycles. T-trees
are important since they too are always planar, and allow
nice layouts and familiar browsers. Note that though multi-
trees have no diamonds (a condition on their directed links),
when considered undirected they do have cycles (e.g., in
Figure 1(ii), the cycle from Book to ProfessorA to Volumes
to the Tree1 root back to Book), and so they are not topolog-
ical trees. Yet multitrees do have large topological trees
within them, as described in the following proposition. Let
us say x ≥ y iff x is above y in the DAG.

Proposition 2. Consider any two nodes x ≥ y in a multitree,
and the necessarily unique path connecting them. The
union of all the ancestors of this path and all the descen-
dents of this path is a topological tree.

This result is illustrated in Figure 3 and has several practical
applications for making useful graphical interfaces for mul-
titrees. We consider some of these in the next section, with
illustrations from screendumps of our prototype browsers
written in Tk/Tcl.

VIEWING AND BROWSING MULTITREES

First consider when x=y. Then we have the simple case of
showing simultaneously the tree of descendent contents and
the tree of ancestral contexts for an individual node. We call

333

Boston, Massachusetts USA • April 24-28, 1994 Human Factors in Computing Systems

used varying amounts of the pre-existing structure (the
“original” tree from the file system). In Figure 4, the central
highlighted cell is labeled “Directions.” Looking down from
the “Directions” node (to the right in this layout) we see the
tree of files relating to how one travels to and from various
Bellcore locations and related places. Looking up from
“Directions” (to the left) we see that “Directions” is a
descendent of the original tree and of the three post hoc clas-
sifications. Proposition 2 guarantees that both the upward
and downward views are trees and that they can be shown
simultaneously as single large t-tree. (Note that a centrifugal
view may be truncated at any desired radius.)

An interesting consequence of Proposition 2 is that transi-
tions between centrifugal views can be animated nicely.
Consider browsing over multitrees using a centrifugal
viewer and moving the focus around one link at time, say
from node a to neighboring node b. In such a case, if a and b
are adjacent, then one is above the other, and Proposition 2
applies, meaning that the union of the old and new views is
in fact a t-tree, and can be displayed together in 2-D. This
allows a nice animation option, showing the transition by
first adding the new material, showing both together, then
deleting the old.1

A third consequence of proposition 2 is for presenting vari-
ous kinds of fisheye views of multitrees. Furnas[5][6] intro-

1. In practice there is some subtlety in that one might also want
layouts to respect sibling order and direction of links (e.g., parents
to the left of children).

this a centrifugal view of the structure, because it follows
links in the direction away from some central point of focus.

Figure 4 shows our browser’s centrifugal view of a dataset
of local Bellcore information. This data set was drawn from
a database maintained on our local file system at Bellcore.
Users deposit useful information in a particular directory on
an ad hoc basis. Anyone with an account is free to add or
reorganize material. People have posted material related to
corporate practices, life in Northern New Jersey, practical
information such as directions, and diatribes on art. To cre-
ate the multitree shown in these figures, the authors and one
volunteer created new hierarchical organizations (trees) that

Figure 3 . Proposition 2 illustrated. Two nodes in a
multitree, the unique path connecting them, and all
the descendents and ancestors of this path together
are guaranteed to form a topological tree.

y

x

Directions

Airports
JFKtoEWR
MREtoEWR
toJFK

BellcoreLocations

MRE
NVC
PYA
RRC

Clients

Ameritech
Bell_Atlantic
Bellsouth
Nynex
Pacific_Telesis
Southwest
USWest

LongIsland
NYC via_car

OtherLabs
NEC.princeton
murrayhill
siemens.princeton

RRStations

convent
hoboken
morristown
newark.amtrak
newark.conrail
nyc-grandcentral
nyc-penn
phone-numbers

Universities

FromYale
Lehigh
Princeton
Rutgers
brooklyn.polytechnic
to.suny.stony.brook

murrayHill-Dirn

/usr/public/info

New Jersey
User JMZ

Outside Bellcore
BellcoreRelatedUser HBW

User GWF

Figure 4 . Centrifugal view of the multitree built upon our /usr/public/info information repository. The view is
centered on the node called “Directions” and shows the tree of ancestors (to the left) and the tree of descendents
(to the right) of this node.

Human Factors in Computing Systems CHI’94 * “Celebrating Interdependence”

334

duced a notion of generalized fisheye views that tried to
obtain a balance of local detail and global context. For sim-
ple trees it generated a scheme that assigned greatest interest
to the ancestral lineage of a focal node, and next interest to
nodes one link off that lineage, etc. A similar strategy is pos-
sible for multitrees and only requires that one specify not
just a focal content node but a focal context node as
well.Thus, for example, one could specify not just a leaf (as
the focal content), but also a root (as focal context). The
root selects a tree, and then an ordinary tree fisheye view
can be generated. In the world of multitrees, however, there
are a few new twists. For example one can shift around not
only the leaf focus, but also the root focus, slowly changing
contexts. A second interesting twist arises from the fact that
just as there is a tree of contents from any chosen root, there
is also an inverted tree of contexts looking upward from any
leaf. Thus this inverted tree can also be viewed with a fish-
eye viewer -- so two fisheye views are possible for any cho-
sen focal-context/focal-content pair.

Figure 5 shows a coordinated pair of first-order fisheye
views for the same Bellcore information structure shown in
Figure 4. The context focus is on one of the post-hoc organi-
zations of the database and the content focus on the “Direc-
tions,” both described above. The nodes in the lineage
connecting them appear in black, the rest in gray. In the left
pane we see the fisheye view of descendent trees; in the
right view, the fisheye view of ancestor trees. There are pure
indent-based layouts of both of these trees. Ordinary indent-
ing used in familiar outlines is possible for the tree of
descendents (a typical fisheye outline view). A complemen-
tary “outdenting” structure can be used for the tree of ances-
tors. This latter view takes getting used to so we have

User JMZ
Corporate Stuff
Computing Environment
Consumerism
Culture
Food
Health
New Jersey

Cars

Airports
BellcoreLocations
Clients
LongIsland
NYC
OtherLabs
RRStations
Universities
murrayHill-Dirn

drivers_license
Maps_(see:_Directions)
nj_taxes
nyc-buses

News
Science
USA
Instructions
Recreation

Directions Directions
/usr/public/info
New Jersey

Outside Bellcore
BellcoreRelated
User GWF

User JMZ

Figure 5 . Coordinated pair of first order fisheye views. Both views are defined by a focal-context, focal-content
pair, here “User JMZ” and “Directions”. The view on the left is a simple tree fisheye view of the downward tree of
contents rooted at the context “User JMZ”. It shows the ancestral lineage linking the focal-context and the focal-
content, and the first-order descendents of the lineage. The view on the right is a similar tree fisheye view of the
inverted tree of contexts rooted at the content “Directions”. It too shows the ancestral lineage linking the focal-
context and the focal-content, but this time with the first-order ancestors (contexts) of the lineage.

explicitly also drawn in the tree links to these views to make
the structure more apparent.

Thanks to Proposition 2 it is possible to make a single view
which shows both fisheye views at once: the lineage con-
necting a selected leaf and selected root, together with
immediate ancestors and descendents of that lineage. Pretty
versions of this, however, require one to be able to permute
the ordering of branches, as is the case for the genealogy
shown in Figure 6.

PROBLEMS AND SOME SOLUTIONS

Like other points on the spectrum of structural complexity
from trees to graphs, multitrees have their own limitations.
In this section we discuss some of these and related prob-
lems, as well as some strategies for working around them.

If diamonds are forever...

Multitrees are essentially defined by the absence of dia-
monds. This is a strong requirement and deserves more dis-
cussion. The existence of a single downward path from a
node to a descendent is a familiar constraint on simple trees.
It is a constraint we have often learned to live with, reflect-
ing the ideal that the structure is at each level a partition.
The tree successively refines the disjoint categorization of
the world. If this ideal has merit then multitree structures
offer a useful extension -- merely providing a family of
alternative classifications in a single structure. (In fact, as it
turned out from Proposition 1(c), tree-structured families of
such classifications.)

Diamonds, however will not always go away. There are sev-
eral circumstances under which we might want to consider

335

Boston, Massachusetts USA • April 24-28, 1994 Human Factors in Computing Systems

relaxing the diamond-free constraint. One case comes
directly from the simpler world of trees, where from time to
time, people want to put the same item in more than one
place in the tree. Such violations of tree structure introduce
diamonds and would similarly violate multitree structure. If
diamonds are infrequent, we believe, this can be handled as
with trees: The fundamental tree or multitree ideal is pre-
served, and some small exceptions are made, e.g., by virtual
duplication of nodes. Furthermore if diamonds are long, as
is often the case, then the structures are still locally multi-
trees, and local views will still behave ideally.

A more systematic problem arises when one has an internal
node below which one would like to offer a choice of orga-
nization for descendents. For example one might have a
subset of documents to be organized for access both alpha-
betically and by date. A whole suite of diamonds would
begin at this node, and end at each of the cross-classified
documents. For such cases, one might consider a new class
of structures slightly more general than multitrees but from
which sub-multitrees can be easily extracted. One would
just need a way to break the diamonds in a systematic way
to generate tree views as needed. For example, suppose any
such node would be flagged (e.g., colored red) to indicate
that its children offer two alternative breakdowns of its
descendents, and that one must be chosen to preserve tree
structure, and a default used in any needed view. A particu-
larly clean version of this would require that its children
really all have the same descendents, so that the semantics

Figure 6 . Integrated fisheye view for a royal genealogy. This view shows both upward and downward fisheye views
at once, i.e., the ancestral lineage (from Queen Victoria to Queen Elizabeth II), as well as both first order ancestors
and first order descendants of that lineage.

Victoria, 1819-1901

Edward VII, 1841-1910

George VI 1895-1952

George V, 1865-1936

Elizabeth II, 1926-

Alfred, 1844-1900

Victoria, 1840-1901

Victoria, 1786-1861

Albert, 1819-1861

Alexandra, 1844-1925

Mary, 1867-1953

Elizabeth, 1900-

Edward, 1767-1861

Louise, 1848-1939

Arthur, 1850-1942

Leopold, 1853-84

Beatrice, 1858-1944

Alice, 1843-78

Albert Victor, 1864-92

Louise, 1867-1931

Victoria, 1868-1935

Maud, 1869-1938

Helena, 1844-1900

Edward VIII, 1894-1972

Henry, 1900-74

Anne, 1950-

George, 1902-42

Andrew, 1960-

John, 1905-19

Edward, 1964-

Margaret Rose, 1930-

Mary, 1897-1965

Charles, 1948-

of the flagged node would be un-altered by the choice of
subsequent classification.

A related problem concerns the organization of roots. In par-
ticular, it will be noted that there is no top-down structure
over the set of roots (e.g., in Figure 1(iii)). It should be
remembered, however, that the various contexts (including
the various roots) can indeed be browsed, not top-down but
from the bottom up, from the point of view of a particular
focal content. If one wants to guarantee a view of all roots
one could introduce an artificial leaf, descendent from all
roots, whose upward view by design is therefore a tree con-
taining all those roots.

In the end, of course, if hierarchical partition is rare, and
partial overlap and random interconnection is the rule, then
neither trees nor multitrees will be appropriate, and one
needs to move back in the direction of general DAGs for
representation, paying the corresponding price in complicat-
ing the interface.

Viewing the whole structure

For some applications a view of a non-tree portion of a mul-
titree (e.g., the entire multitree) may be desirable. This
might arise in particular when building on an existing multi-
tree and wanting to take fragments from different subtrees,
or perhaps in some unusual browsing situations. The fact
that multitrees are not generally planar presents a challenge,
and the problem becomes similar to one of general DAG
visualization and browsing. A 3-dimensional layout may be

Human Factors in Computing Systems CHI’94 * “Celebrating Interdependence”

336

best for this, with adjacent nodes placed near each other, and
the direction of links preserved in the layout. Multitrees may
allow special 3-D arrangements, since whole tree portions
of interest may be assigned to their own planes in the struc-
ture.

Reuse out of context

There is a problem that always arises in reuse, no less for
hierarchical structure and multitrees. That is, fragments
composed in one specific context may not work well out of
that context. This problem comes up in code reuse, where
special discipline is needed to design and encapsulate mod-
ules so that they may be called from various contexts. In text
systems fragments can contain anaphora, explicit reference
to other sections, conceptual prerequisites, etc. all of which
are resolved in a well written linear text. This has always
caused problems for hypertext, where fragments may be
encountered in various orders. The typical solution is to try
to write fragments that stand alone, leading to an often jerky
style.

For hierarchical reuse, the problem would be that a new tree
assembled from fragments taken from elsewhere would not
hang together well. The individual readings in a professor’s
course, just plucked out and glued together, might well lack
establishing context and smooth transitions. There are two
strategies however that should greatly ameliorate the prob-
lem. The first is to admit that some points in an existing
structure might be more suitable candidates than others for
reuse, and make the most use of those pieces that have less
external dependency. The second is to note that new trees
built in the structure can introduce newly created fragments.
Thus it is quite possible to include new ad hoc fragments
that can provide the segues and contexts for the old pieces
that are being reused. A nice feature of this solution is also
that these new fragments are automatically specifically asso-
ciated with the new contextual organization in which the old
fragments now appear.

Constructing Multitrees

Constructing multitrees, like building structure in general,
presents a challenge. Perhaps one of the most reliable ways
to construct good multitrees will be as in our initial example
of professors setting up courses, i.e., by hand. It is intrigu-
ing, however to consider automatic methods that might try
build multitrees from some pre-existing resources. For
example, multitrees may be implicit in particular instances
of more general graphs. Botafogo et al.[1] have presented an
algorithm for finding trees within general hypertext graphs,
based on the number of links into and out of a node (a root is
defined to be a node that can reach every, or nearly every,
node in the hypertext). The IGD system[4] allowed users to
build such trees by hand on top of an existing DAG. If one
could use such techniques to identify several trees within a
hypertext, and then join them together, this would produce a
multitree.

CONCLUSIONS

The principal contribution of multitrees is as a new coherent
point on the structural continuum from trees to general
graphs. Like all other points on that spectrum, they have

their strengths and weaknesses, both in their graphical and
semantic capabilities. As with DAGs in general, showing a
whole multitree can be difficult, but large meaningful frag-
ments can be shown as simple trees. Multitrees have natural
notions of content and context, and seem appropriate for
cases of reuse of hierarchical structure. Their appropriate-
ness for more general representation (e.g., knowledge bases,
or object oriented class systems) is an open question, but
still they may provide a useful approximation just as trees
sometimes do. For example Creech, et al.[2] have imple-
mented a hypertext system for software reuse based on
DAGs. It would be interesting to see if multitrees could
serve as well. Even if multitrees are too constraining, it is
possible that they can form a distinguished backbone, with
other types of links serving to complete the structure. Thus
the tree pieces can be used for some viewing and navigation
purposes, and abandoned as needed.

Acknowledgments

We would like to thank Susan Dumais, Jakob Nielsen, and
Scott Stornetta and Henri Weinberg for variously trying the
browsers and reading drafts of this paper.

REFERENCES

[1] Botafogo, R.A., Rivlin, E., Schneiderman, B., Struc-
tural analysis of hypertext: identifying hierarchies and
useful metrics, ACM Transactions on Information Sys-
tems, 10(2), 1992, 142-180.

[2] Creech, M. L., Freeze, D. F., Griss, M. L., Using
hypertext in selecting reusable software components,
Hypertext’91Proceedings, ACM, 25-38, 1991.

[3] Egan, D. E., Remde, J. R., Landauer, T. K., Lochbaum,
C. L., and Gomez, L. M., Behavioral Evaluation and
Analysis of a Hypertext Browser, Proceedings of ACM
CHI’89 Conference on Human Factors in Computing
Systems 205-210, 1989.

[4] Feiner, S. (1988). Seeing the forest for the trees: Hier-
archical display of hypertext structure. Proc. ACM
Conf. Office Information Systems (Palo Alto, CA, 23-
25 March), 205-212.

[5] Furnas, G. W., The FISHEYE view: A new look at
structured files. Bell Laboratories Technical Memo-
randum, 1982.

[6] Furnas, G. W., Generalized fisheye views. Human
Factors in Computing Systems CHI ‘86 Conference
Proceedings, Boston, April 13-17, 1986, 16-23.

[7] Landauer, T. K., Dumais, S. T., Gomez, L. M., & Fur-
nas, G. W., Human factors in data access. Bell System
Technical Journal, (Special Issue on Data Bases), 61,
1982, pp. 2487-2509. Reprinted in: Journal of Infor-
mation and Image Management. September, 1983, Vol
16(9), pp. 18-29.

[8] Parunak, H. Van Dyke, Hypermedia topologies and
user navigation, Hypertext’89 Proceedings, ACM, 43-
50, 1989.

