
ABSTRACT

In view navigation a user moves about an information struc-
ture by selecting something in the current view of the struc-
ture. This paper explores the implications of rudimentary
requirements for effective view navigation, namely that,
despite the vastness of an information structure, the views
must be small, moving around must not take too many steps
and the route to any target be must be discoverable. The
analyses help rationalize existing practice, give insight into
the difficulties, and suggest strategies for design.

KEYWORDS: Information navigation, Direct Walk, large
information structures, hypertext, searching, browsing

INTRODUCTION

When the World Wide Web (WWW) first gained popularity,
those who used it were impressed by the richness of the con-
tent accessible simply by wandering around and clicking
things seen on the screen. Soon after, struck by the near
impossibility of finding anything specific, global navigation
was largely abandoned in place of search engines. What went
wrong with pure navigation?

This work presented here seeks theoretical insight into, in
part, the problems with pure navigational access on the web.
More generally, it explores some basic issues in moving
around and finding things in various information structures,
be they webs, trees, tables, or even simple lists. The focus is
particularly on issues that arise as such structures get very
large, where interaction is seriously limited by the available
resources of space (e.g., screen real estate) and time (e.g.,
number of interactions required to get somewhere): How do
these limits in turn puts constraints on what kinds of informa-
tion structures and display strategies lead to effective naviga-
tion? How have these constraints affected practice, and how
might we live with them in future design?

We will be considering systems with static structure over
which users must navigate to find things, e.g., lists, trees,

planes, grids, graphs. The structure is assumed to contain ele-
ments of some sort (items in a list, nodes in a hypertext
graph) organized in some logical structure. We assume that
the interface given to the user is navigational, i.e., the user at
any given time is “at” some node in the structure with a view
specific to that node (e.g., of the local neighborhood), and has
the ability to move next to anything in that current view. For
example for a list the user might have window centered on a
particular current item. A click on an item at the bottom of
the window would cause that item to scroll up and become
the new “current” item in the middle of the window. In a
hypertext web, a user could follow one of the visible links in
the current hypertext page.

In this paper we will first examine view traversal, the under-
lying iterative process of viewing, selecting something seen,
and moving to it, to form a path through the structure.1 Then
we will look at the more complex view navigation where in
addition the selections try to be informed and reasonable in
the pursuit of a desired target. Thus view traversal ignores
how to decide where to go next, for view navigation that is
central.The goal throughout is to understand the implications
of resource problems arising as structures get very large.

EFFICIENT VIEW TRAVERSIBILITY

What are the basic requirements for efficient view traversal?
I.e., what are the minimal capabilities for moving around by
viewing, selecting and moving which, if not met, will make
large information structures, those encompassing thousands,
even billions of items, impractical for navigation.

Definitions and Fundamental Requirements

We assume that the elements of the information structure (the
items in a list, nodes in a hypertext graph, etc.) are organized
in a logical structure that can be characterized by a logical
structure graph, connecting elements to their logical neigh-
bors as dictated by the semantics of the domain.2 For an
ordered list this would just be line graph, with each item con-
nected to the items which proceed and follow it. For a hyper-

1 This is the style of interaction was called a direct walk by
Card, et al [2]. We choose the terminology “view traversal”
here to make explicit the view aspect, since we wish to study
the use of spatial resources needed for viewing.
2 More complete definitions, and proofs of most of the mate-
rial in this paper can be found in [3]

Effective View Navigation

George W. Furnas
School of Information
University of Michigan

(313) 763-0076
furnas@umich.edu

To appear in Human Factors in Computing Systems, CHI’97 Conference Proceedings (ACM), Atlanta GA, March 22-27, 1997.

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list

Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT(SCROLLING-LISTn) = (O(1), O(n)), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

Furnas Effective View Navigability November 26, 1996 3

Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.

Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT(BALANCED-REGULAR-TREEn) = (O(1), O(log n)) ••

•• example 3: local viewing of a hypercube

Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT(HYPERCUBEn) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures
What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions

One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT(MULTI-COLUMN-LISTn) = (O(1), O(sqrt(n)).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4 Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 4

illustrated in Figure 3 (e), where the part of the viewing
graph in (c) is shown in the unfolded version of the list.••

The critical thing to note in the example is that some of the
links of the viewing graph point to nodes that are not local in
the logical structure of the graph. This is a very general class
of strategies for decreasing the diameter of the viewing graph,
further illustrated in the next example.

•• example 5: fixing the list (version 2) - fisheye sampling

It is possible to use non-local viewing links to improve
even further the view-traversability of a list. Figure 3
shows a viewing strategy where the nodes included in a
view are spaced in a geometric series. That is, from the
current node, one can see the nodes that are at a distance
1, 2, 4, 8, 16,... away in the list. This sampling pattern
might be called a kind of fisheye sampling, in that it
shows the local part of the list in most detail, and further
regions in successively less detail.

This strategy results in a view size that is logarithmic in
the size of the list. Moving from one node to another ends
up to be a process much like a binary search, and gives a
diameter of the viewing graph that is also logarithmic.
Thus

EVT(FISHEYE-SAMPLED-LISTn) = (O(log n), O(log n)).

Note that variations of this fisheye sampling strategy can
yield good EVT performance for many other structures,
including 2D and 3D grids. ••

The lesson from examples 4 and 5 is that even if the logical
structure is not EVT, it is possible to make the viewing struc-
ture EVT by adding long-distance links.

•• example 6: fixing the list (version 3) - tree augmentation

In addition to just adding links, one can also adding nodes
to the viewing graph that are not in the original logical
structure. This allows various shortcut paths to share
structure, and reduce the total number of links needed,

Figure 4. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) part of viewing graph of fish-
eye sampled list, showing that out degree is
O(log(n)), (c) sample actually selected from list (d)
view actually given, of size O(log(n)), (e) illustration
of how diameter of viewing graph is now O(log(n)).

(a) (b) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple...

...endive...

ginger

herbs

indigo

jicama

kale...

...mango...

...quince

(d)(c)
and hence the general outdegree. For example, one can
glue a structure known to be EVT onto a given non-EVT
structure. In Figure 2 a tree is glued onto the side of the
list and traversal is predominantly through the tree. Thus
in Figure 2, new nodes are introduced (O(n)), and viewing
links are introduced in the form of a tree. Since the outde-
grees everywhere are of size ≤3, and logarithmic length
paths now exist between the original nodes by going
through the tree, we get

EVT(TREE-AUGMENTED-LISTn) = (O(1), O(log n)). ••

Although there is not enough space here for details, we note
in passing that an EVT analysis of zoomable interfaces is
valuable in clarifying one of their dramatic advantages -- the
diameter of the space is reduced from O(sqrt(n)) to O(log n).
[3][4]

Remarks about Efficient View Traversability

Efficient View Traversability is a minimal essential condition
for view navigation of very large information structures. In a
straight forward way it helps to explain why simple list view-
ers do not scale, why phone books and cone-trees exploit 3D,
why trees and fisheyes and zooms all help.

EVT analysis also suggests strategies for design. One can try
to coerce an information world into a representation which
naturally supports EVT1 and EVT2, e.g., the common prac-
tice of trying to represent things in trees. Alternatively one
can fix a poor structure by adding long-distance links, or add-
ing on another complete structure. Note that in general, the
impact of selectively adding links can be much greater on
decreasing diameter than on increasing view sizes, to net pos-
itive effect. One result of this simple insight is a general ver-
sion of the tree augmentation strategy. In general terms,
gluing any good EVT graph onto a bad one will make a new
structure as good as the good graph in diameter, and not much
worse than the worse of the two in outdegree. I.e., always
remember the strategy of putting a traversable infrastructure
on an otherwise unruly information structure!

Efficiently view traversable structures have an additional
interesting property, “jump and show”: an arbitrary non-nav-
igational jump (e.g., as the result of a query search) from one
location to another has a corresponding view traversal version
with a small rendering: a small number of steps each requir-

Figure 5. Improving EVT of a list by adding a tree.
The resulting structure has constant viewsize but
logarithmic diameter

(a) (c)(b)

Furnas Effective View Navigability November 26, 1996 5

ing a small view will suffice. Thus a short movie or small
map will show the user how they could have done a direct
walk from their old location to their new one. A similar con-
cept was explored for continuous Pan&Zoom in [4].

NAVIGABILITY

Efficient view traversability is not enough: it does little good
if a short traversal path to a destination exists but that path is
unfindable. It must be possible somehow to read the structure
to find good paths; the structure must be view navigable.

For analysis we imagine the simple case of some navigator
process searching for a particular target, proceeding by com-
paring it to information associated with each outlink in its
current view (outlink-info, e.g. a label). From this compari-
son, it decides which link to follow next.

In this paper we will explore an idealization, strong naviga-
bility , requiring that the structure and its outlink-info allow
the navigator (1) to find the shortest path to the target (2)
without error and (3) in a history-less fashion (meaning it can
make the right choice at each step by looking only at what is
visible in the current node). We examine this case because it
is tractable, because it leads to suggestive results, and
because, as a desirable fantasy, its limits are worth under-
standing.

To understand when strong view navigation is possible, a few
definitions are needed. They are illustrated in Figure 6 .

Consider a navigator at some node seeking the shortest path
to a target. A given link is a defensible next step only for cer-

Figure 6 The outlink-info for link A-->i is an enumeration,
and for A-->n is a feature (a shaded circle). These are
both well matched. The link info for links to the right of
A is not-well matched. The residue of f at A is the
shaded-circle label. The residue of e at A is its appear-
ance in the enumeration label. The node g has residue
in the upper right enumeration label at A, but it is not
good residue. The node h has no residue at A.

Link A-->n A-->u A-->i A-->d

to-set {c,f,k,p,r,s} {c,f,u,p,s} {e,i,m,t} {b,d,g,h,j,l,o,q,s}

outlink-info

inferred to-set <c,f,k,p,r,s> <g,x,y,z> <e,i,m,t> <?>

g x y z e i m t

f
p

c

t
h

r

u

i

o

g

j

k n

l b

e

s

m

A

d

q

e i m t

g x y z

tain targets -- the link must be on a shortest path to those tar-
gets. We call this set of targets the to-set of the link, basically
the targets the link efficiently “leads to”. If the navigator’s tar-
get is in the to-set of a link, it can follow that link.

We assume, however, that the navigator does not know the to-
set of a link directly; it is a global property of the structure of
the graph. The navigator only has access to the locally avail-
able outlink-info which it will match against its target to
decide what link to take. We define the inferred-to-set of a
link to be the set of all target nodes that the associated out-
link-info would seem to indicate is down that link (the targets
that would match the outlink-info), which could be a different
set entirely.

In fact, we say that the outlink-info of a link is not misleading
with respect to a target when the target being in the inferred-
to-set implies it is in the true to-set, or in other words when
the outlink-info does not mislead the navigator to take a step
it should not take. (Note that the converse is not being
required here; the outlink-info need not be complete, and may
underspecify its true-to-set.)

Next we say that the outlink-info of node as a whole is said to
be well-matched with respect to a target if none of its outlink-
info is misleading with respect to that target, and if the target
is in the inferred-to-set of at least one outlink. Further we say
that the outlink information at a node is simply well-matched
iff it is well-matched with respect to all possible targets.

We now state the following straightforward proposition:

Proposition (navigability): The navigator is guaran-
teed to always find shortest paths to targets iff the
outlink-info is everywhere well-matched.

Hence, the following requirement for a strongly navigable
world:

Requirement VN1(navigability): The outlink-info
must be everywhere well matched.

The critical observation in all this for designing navigable
information systems is that, to be navigable, the outlink-info
of a link must in some sense describe not just the next node,
but the whole to-set. This is a problem in many hypertext sys-
tems, including the WWW: Their link-labels indicate adja-
cent nodes and do not tell what else lies beyond, in the whole
to-set. In a sense, for navigation purposes, “highway signage”
might be a better metaphor for good outlink-info than “label”.
The information has to convey what is off in that direction,
off along that route, rather than just where it will get to next.
As we will see shortly, this is a difficult requirement in prac-
tice.

First, however, we turn the analysis on its head. The perspec-
tive so far has been in terms of how the world looks to a navi-
gator that successively follows outlinks using outlink-info
until it gets to its target: the navigator wants a world in which
it can find its target. Now let us think about the situation from
the other side -- how the world looks from the perspective of
a target, with the assumption that targets want a world in
which they can be found. This complementary perspective
brings up the important notion of residue or scent .The resi-

Furnas Effective View Navigability November 26, 1996 6

due or scent of a target is the remote indication of that target
in outlink-info throughout the information structure. More
precisely, a target has residue at a link if the associated out-
link-info would lead the navigator to take that link in pursuit
of the given target, i.e., to put the target in the inferred-to-set
of the link. If the navigator was not being mislead, i.e, the
outlink-info was well-matched for that target, then we say the
residue was good residue for the target.(Refer back to the
caption of Figure 6).

An alternate formulation of the Navigability proposition says
that in order to be findable by navigation from anywhere in
the structure, a target must have good residue at every node.
I.e., in order to be able to find a target, the navigator must
have some scent, some residue, of it, no matter where the
navigator is, to begin chasing down its trail.

Furthermore, if every target is to be findable, we need the fol-
lowing requirement, really an alternate statement of VN1:

Requirement VN1a (residue distribution): Every
node must have good residue at every other node.

This is a daunting challenge. There are numerous examples
of real world information structures without good residue dis-
tribution. Consider the WWW. You want to find some target
from your current location, but do not have a clue of how to
navigate there because your target has no good-residue here.
There is no trace of it in the current view. This is a fundamen-
tal reason why the WWW is not navigable. For another
example consider pan&zoom interfaces to information
worlds, like PAD[5]. If you zoom out too far, your target can
become unrecognizable, or disappear entirely leaving no resi-
due, and you cannot navigate back to it. This has lead to a
notion of semantic zooming [1] [5] , where the appearance of
an object changes as its size changes so that it stays visually
comprehensible, or at least visible -- essentially a design
move to preserve good residue.

The VN1 requirements are difficult basically because of the
following scaling constraint.

Requirement VN2. Outlink-info must be “small”.

To understand this requirement and its impact, consider that
one way to get perfect matching or equivalently perfect glo-
bal residue distributions would be to have an exhaustive list,
or enumeration, of the to-set as the outlink-info for each link
(i.e., each link is labeled by listing the complete set of things
it “leads to”, as in the label of the lower left outlink from node
A in). Thus collectively between all the outlinks at each node
there is a full listing of the structure, and such a complete
union list must exist at each node. This “enumeration” strat-
egy is presumably not feasible for view navigation since,
being O(n2), it does not scale well. Thus, the outlink-info
must somehow accurately specify the corresponding to-set in
some way more efficient than enumeration, using more con-
ceptually complex representations, requiring semantic
notions like attributes (Red) and abstraction (LivingThings).

The issues underlying good residue, its representation and
distribution, are intriguing and complex. Only a few modest
observations will be listed here.

Remarks on View Navigability

Trees revisited. One of the most familiar navigable informa-
tion structures is a rooted tree in the form of classification
hierarchies like biological taxonomies or simple library clas-
sification schemes like the dewey decimal system. In the tra-
versability section of this paper, balanced trees in their
completely unlabeled form were hailed as having good tra-
versal properties just as graphs. Here there is an entirely dif-
ferent point: a systematic labeling of a rooted tree as a
hierarchy can make it in addition a reasonably navigable
structure. Starting at the root of a biological taxonomy, one
can take Cat as a target and decide in turn, is it an Animal or a
Plant, is it a Vertebrate or Invertebrate, etc. and with enough
knowledge enough about cats, have a reasonable (though not
certain!) chance of navigating the way down to the Cat leaf
node in the structure. This is so familiar it seems trivial, but it
is not.

First let us understand why the hierarchy works in terms of
the vocabulary of this paper. There is well matched out-link
info at each node along the way: the Vertebrate label leads to
the to-set of vertebrates, etc. and the navigator is not misled.
Alternately, note that the Cat leaf-node has good residue
everywhere. This is most explicit in the Animal, Vertebrate,
Mammal,... nodes along the way from the root, but there is
also implicit good residue throughout the structure. At the
Maple node, in addition to the SugarMaple and NorwayMa-
ple children, neither of which match Cat, there is the upward
outlink returning towards the root, implicitly labeled “The
Rest”, which Cat does match, and which is good residue. This
superficial explanation has beneath it a number of critical
subtleties, general properties of the semantic labeling scheme
that rely on the richness of the notion of cat, the use of large
semantic categories, and the subtle web woven from of these
categories. These subtleties, all implied by the theory of view
navigation and efficient traversability not only help explain
why hierarchies work when they do, but also give hints how
other structures, like hypertext graphs of the world wide web,
might be made navigable.

To understand the navigation challenge a bit, consider the
how bad things could be.

The spectre of essential non-navigability. Cons ider tha t
Requirement VN2 implies that typically the minimum
description length of the to-sets must be small compared to
the size of those sets. In information theory that is equivalent
to requiring that the to-sets are not random. Thus,

•• example 7: non-navigable 1 - completely unrelated items.

A set of n completely unrelated things is intrinsically not
navigable. To see this consider an abstract alphabet of size
n. Any subset (e.g., a to-set) is information full, with no
structure or redundancy, and an individual set cannot be
specified except by enumeration. As a result it is not hard
to show there is no structure for organizing these n things,
whose outlinks can be labeled except with predominant

Furnas Effective View Navigability November 26, 1996 7

use of enumeration5, and so overall VN2 would be vio-
lated. ••

Such examples help in understanding navigability in the
abstract, and raise the point that insofar as the real world is
like such sets (is the web too random?), designing navigable
systems is going to be hard. Having set two extremes, the rea-
sonably navigable and the unnavigable, consider next a num-
ber of general deductions about view navigation.

Navigability requires representation of many sets. Every
link has an associated toset that must be labeled. This means
that the semantics of the domain must be quite rich to allow
all these sets to have appropriate characterizations (like,
RedThings, Cars, ThingsThatSleep). Similarly since a target
must have residue at every node, each target must belong to n
of these sets -- in stark contrast to the impoverished semantics
of the purely random non-navigable example.

Navigability requires an interlocking web of set
representations. Furthermore, these to-sets are richly inter-
dependent. Consider the local part of some structure shown in
Figure 7. Basically, the navigator should go to y to get to the

targets available from y. In other words the to-set, A, out of x ,
is largely made up of the to-sets B and C out of neighboring y.
(The exceptions, which are few in many structures, are those
targets with essentially an equally good path from x and y.)
This indicates that a highly constrained interlocking web of
tosets and corresponding semantics and labels must be
woven. In a hierarchy the to-sets moving from the root form
successive partitions and view navigability is obtained by
labeling those links with category labels that semantically
carve up the sets correspondingly. Animals leads, not to
“BrownThings” and “LargeThings” but to Vertebrates and
Invertebrates -- a conceptual partition the navigator can
decode mirroring an actual partition in the toset. Other struc-
tures do not often admit such nice partitioning semantics. It is
unclear what other structures have to-sets and webs of seman-
tic labelings that can be made to mirror each other.

Residue as a shared resource. Since ubiquitous enumera-
tion is not feasible, each target does not get its own explicit
listing in outlink-info everywhere. It follows that in some
sense, targets must typically share residue. The few bits of
outlink-info are a scarce resource whose global distribution
must be carefully structured, and not left to grow willy-nilly.
To see this consider putting a new page up on the web. In the-
ory, for strong navigability, every other node in the net must
suddenly have good residue for this new page! Note how
cleverly this can be handled in a carefully crafted hierarchy.

5 Technically, use of enumeration must dominate but need not
be ubiquitous. Some equivalent of the short label “the rest” can
be used for some links, but this can be shown not to rescue the
situation.

x
A

C

B
y

Figure 7. Two adjacent nodes, x and y, in a structure.
The to-sets associated with each outlink are
labeled in upper case.

All the many vertebrates share the short Vertebrate label as
residue. Global distribution is maintained by the careful
placement of new items: put a new vertebrate in the right
branch of the tree, and it shares the existing good residue. It is
probably no accident that the emerging large navigable sub-
structures over the web, e.g. Yahoo!, arise in a carefully
crafted hierarchical overlay with careful administrative super-
vision attending to the global distribution of this scare residue
resource.

Similarity-based navigation. One interesting class of naviga-
ble structures makes use of similarity both to organize the
structure and run the navigator. Objects are at nodes, and
there is some notion of similarity between objects. The out-
link-info of a link simply indicates the object at other end of
link. The navigator can compute the similarity between
objects, and chooses the outlink whose associated object is
most similar to its ultimate target, in this way hill-climbing up
a similarity gradient until the target is reached. One might
navigate through color space in this way, moving always
towards the neighboring color that is most similar to the tar-
get. Or one might try to navigate through the WWW by
choosing an adjacent page that seems most like what one is
pursuing (this would be likely to fail in general).

Similarity based navigation requires that nodes for similar
objects be pretty closely linked in the structure, but that is not
sufficient. There can be sets of things which have differential
similarity (not completely unrelated as in the non-navigable
example 6), and which can be linked to reflect that similarity
perfectly, but which are still fundamentally non-navigable,
essentially because all similarity is purely local, and so there
is no good-residue of things far away.

•• example 8: non-navigable set 2 - locally related structure.

This example concerns sets with arbitrary similarity struc-
ture but only local semantics, and that are hence non-nav-
igable.Take any graph of interest, for example the line
graph below. Take an alphabet as large as the number of
links in the graph, and randomly assign the letters to the
links. Now make “objects” at the nodes that are collec-
tions of the letters on the adjacent links:

Despite the fact that “similar” objects are adjacent in this
organization, there is no way to know how to get from,
say, LG to anything other than its immediate neighbors:
There is no good-residue of things far away ••

This example might be a fair approximation to the WWW --
pages might indeed be similar, or at least closely related, to
their neighbors, yet it is in general a matter of relatively
small, purely local features, and cannot support navigation.

Weaker models of navigability. Suppose we were to relax
strong navigability, for example abandoning the need for
every target to have residue at the current node. Even then
resource constraints dictate that it be possible to explore in a
small amount of time and find appropriate good residue.This
suggests that this relaxation will not dramatically alter the
general conclusions. Imagine that you could sit at a node and
send out a pack of seeing-eye bloodhounds looking for scent
at each step. This really amounts to just changing the viewing

J P B X L G V M T N S

J JP PB BX XL LG GV VM MT TN NS S

Furnas Effective View Navigability November 26, 1996 8

graph, including the sphere that the bloodhounds can see
(smell?) into the “viewed” neighbors. The constraints on how
many hounds and how long they can explore basically
remains a constraint on outdegree in the revised graph.

Combining EVT + VN = Effective View Navigability (EVN)

If we want an information structure that is both efficiently tra-
versable, and is strongly view navigable, then both the
mechanical constraints of EVT on diameter and outdegree
and the residue constraints of VN must hold. In this section
we make some informal observations about how the two sets
of constraints interact.

Large scale semantics dominate. Since by assumption
everything can be reached from a given node, the union of the
to-sets at each node form the whole set of n items in the struc-
ture. If there are v links leaving the node, the average size of
the to-set is n/v. If the structure satisfies EVT2, then v is small
compared to n, so the average to-set is quite large.

The significance of this is that VN1 requires that outlink-info
faithfully represent these large to-sets. If we assume the rep-
resentations are related to the semantics of objects, and that
representations of large sets are in some sense high level
semantics, it follows that high level semantics play a domi-
nant role in navigable structures. In a hierarchy this is seen in
both the broad category labels like Animal and Plant, and in
the curious “the rest” labels. The latter can be used in any
structure, but are quite constrained (e.g., they can only be
used for one outlink per node), so there is considerable stress
on more meaningful coarse-grain semantics. So if for exam-
ple the natural semantics of a domain mostly allow the speci-
fication of small sets, one might imagine intrinsic trouble for
navigation. (Note that Example 8 has this problem.)

Carving up the world efficiently. Earlier it was noted that the
to-sets of a structure form a kind of overlapping mosaic
which, by VN1 must be mirrored in the outlink-info. Enforc-
ing the diameter requirement of EVT2 means the neighboring
to-sets have to differ more dramatically. Consider by contrast
the to-sets of the line graph, a graph with bad diameter. There
the to-sets change very slowly as one moves along, with only
one item being eliminated at a time. It is possible to show (see
[3]) that under EVT2 the overlap pattern of to-sets must be
able to whittle down the space of alternatives in a small num-
ber of intersections. The efficiency of binary partitioning is
what makes a balanced binary tree satisfy EVT2, but a very
unbalanced one not. Correspondingly an efficiently view nav-
igable hierarchy has semantics that partition into equal size
sets, yielding navigation by fast binary search. More gener-
ally, whatever structure, the semantics of the domain must
carve it up efficiently.

Summary and Discussion

The goal of the work presented here has been to gain under-
standing of view navigation, with the basic premise that scale
issues are critical. The simple mechanics of traversal require
design of the logical structure and its viewing strategy so as to
make efficient uses of time and space, by coercing things into
known EVT structures, adding long distance links, or gluing
on navigational backbones. Navigation proper requires that
all possible targets have good residue throughout the struc-

ture. Equivalently, labeling must reflect a link’s to-set, not just
the neighboring node. This requires the rich semantic repre-
sentation of a web of interlocking sets, many of them large,
that efficiently carve up the contents of the space.

Together these considerations help to understand reasons why
some information navigation schemes are,

bad: the web in general (bad residue, diameter), simple
scrolling lists (bad diameter)

mixed: geometric zoom (good diameter, poor residue),

good: semantic zoom (better residue), 3D(shorter paths),
fisheyes (even shorter paths), balanced rooted trees (short
paths and possible simple semantics)

The problem of global residue distribution is very difficult.
The taxonomies implemented in rooted trees are about the
best we have so far, but even they are hard to design and use
for all purposes. New structures should be explored (e.g.,
hypercubes, DAG’s, multitrees), but one might also consider
hybrid strategies to overcome the limits of pure navigation,
including synergies between query and navigation. For exam-
ple, global navigability may not be achievable, but local navi-
gability may be - e.g., structures where residue is distributed
reasonably only within a limited radius of a target. Then if
there is some other way to get to the right neighborhood (e.g.,
as the result of an query), it may be possible to navigate the
rest of the way. The result is query initiated browsing, an
emerging paradigm on the web. Alternatively, one might ease
the residue problem by allowing dynamic outlink-info, for
example relabeling outlinks by the result of an ad-hoc query
of the structure.

Acknowledgments. This work was supported in part by
ARPA grant N66001-94-C-6039.

REFERENCES
1. Bederson, B. B. and Hollan, J. D., PAD++: zooming graphi-

cal interface for exploring alternate interface physics. In
Proceedings of ACM UIST’94, (Marina Del Ray, CA, 1994),
ACM Press, pp 17-26.

2. Card, S. K., Pirolli, P., and Mackinlay, J. D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Pro-
ceedings of CHI’94 Human Factors in Computing Systems
(Boston, MA, April 1994), ACM press, pp. 238-244.

3. Furnas, G.W., Effectively View-Navigable Structures. Paper
presented at the 1995 Human Computer Interaction Consor-
tium Workshop (HCIC95), Snow Mountain Ranch, Colo-
rado Feb 17, 1995. Manuscript available at http://
http2.si.umich.edu/~furnas/POSTSCRIPTS/
EVN.HCIC95.workshop.paper.ps

4. Furnas, G. W., and Bederson, B., Space-Scale Diagrams:
Understanding Multiscale Interfaces. In Human Factors in
Computing Systems, CHI’95 Conference Proceedings
(ACM), Denver, Colorado, May 8-11, 1995, 234-201.

5. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface. In Proceedings of ACM SigGraph `93
(Anaheim, CA), 1993, pp. 57-64.

6. Robertson, G. G., Mackinlay, J.D., and Card, S.K., Cone
trees: animated 3D visualizations of hierarchical informa-
tion. CHI’91 Proceedings, 1991, 189-194.

ABSTRACT

In view navigation a user moves about an information struc-
ture by selecting something in the current view of the struc-
ture. This paper explores the implications of rudimentary
requirements for effective view navigation, namely that,
despite the vastness of an information structure, the views
must be small, moving around must not take too many steps
and the route to any target be must be discoverable. The
analyses help rationalize existing practice, give insight into
the difficulties, and suggest strategies for design.

KEYWORDS: Information navigation, Direct Walk, large
information structures, hypertext, searching, browsing

INTRODUCTION

When the World Wide Web (WWW) first gained popularity,
those who used it were impressed by the richness of the con-
tent accessible simply by wandering around and clicking
things seen on the screen. Soon after, struck by the near
impossibility of finding anything specific, global navigation
was largely abandoned in place of search engines. What went
wrong with pure navigation?

This work presented here seeks theoretical insight into, in
part, the problems with pure navigational access on the web.
More generally, it explores some basic issues in moving
around and finding things in various information structures,
be they webs, trees, tables, or even simple lists. The focus is
particularly on issues that arise as such structures get very
large, where interaction is seriously limited by the available
resources of space (e.g., screen real estate) and time (e.g.,
number of interactions required to get somewhere): How do
these limits in turn puts constraints on what kinds of informa-
tion structures and display strategies lead to effective naviga-
tion? How have these constraints affected practice, and how
might we live with them in future design?

We will be considering systems with static structure over
which users must navigate to find things, e.g., lists, trees,

planes, grids, graphs. The structure is assumed to contain ele-
ments of some sort (items in a list, nodes in a hypertext
graph) organized in some logical structure. We assume that
the interface given to the user is navigational, i.e., the user at
any given time is “at” some node in the structure with a view
specific to that node (e.g., of the local neighborhood), and has
the ability to move next to anything in that current view. For
example for a list the user might have window centered on a
particular current item. A click on an item at the bottom of
the window would cause that item to scroll up and become
the new “current” item in the middle of the window. In a
hypertext web, a user could follow one of the visible links in
the current hypertext page.

In this paper we will first examine view traversal, the under-
lying iterative process of viewing, selecting something seen,
and moving to it, to form a path through the structure.1 Then
we will look at the more complex view navigation where in
addition the selections try to be informed and reasonable in
the pursuit of a desired target. Thus view traversal ignores
how to decide where to go next, for view navigation that is
central.The goal throughout is to understand the implications
of resource problems arising as structures get very large.

EFFICIENT VIEW TRAVERSIBILITY

What are the basic requirements for efficient view traversal?
I.e., what are the minimal capabilities for moving around by
viewing, selecting and moving which, if not met, will make
large information structures, those encompassing thousands,
even billions of items, impractical for navigation.

Definitions and Fundamental Requirements

We assume that the elements of the information structure (the
items in a list, nodes in a hypertext graph, etc.) are organized
in a logical structure that can be characterized by a logical
structure graph, connecting elements to their logical neigh-
bors as dictated by the semantics of the domain.2 For an
ordered list this would just be line graph, with each item con-
nected to the items which proceed and follow it. For a hyper-

1 This is the style of interaction was called a direct walk by
Card, et al [2]. We choose the terminology “view traversal”
here to make explicit the view aspect, since we wish to study
the use of spatial resources needed for viewing.
2 More complete definitions, and proofs of most of the mate-
rial in this paper can be found in [3]

Effective View Navigation

George W. Furnas
School of Information
University of Michigan

(313) 763-0076
furnas@umich.edu

To appear in Human Factors in Computing Systems, CHI’97 Conference Proceedings (ACM), Atlanta GA, March 22-27, 1997.

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list

Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT(SCROLLING-LISTn) = (O(1), O(n)), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

Furnas Effective View Navigability November 26, 1996 3

Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.

Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT(BALANCED-REGULAR-TREEn) = (O(1), O(log n)) ••

•• example 3: local viewing of a hypercube

Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT(HYPERCUBEn) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures
What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions

One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT(MULTI-COLUMN-LISTn) = (O(1), O(sqrt(n)).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4 Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 4

illustrated in Figure 3 (e), where the part of the viewing
graph in (c) is shown in the unfolded version of the list.••

The critical thing to note in the example is that some of the
links of the viewing graph point to nodes that are not local in
the logical structure of the graph. This is a very general class
of strategies for decreasing the diameter of the viewing graph,
further illustrated in the next example.

•• example 5: fixing the list (version 2) - fisheye sampling

It is possible to use non-local viewing links to improve
even further the view-traversability of a list. Figure 3
shows a viewing strategy where the nodes included in a
view are spaced in a geometric series. That is, from the
current node, one can see the nodes that are at a distance
1, 2, 4, 8, 16,... away in the list. This sampling pattern
might be called a kind of fisheye sampling, in that it
shows the local part of the list in most detail, and further
regions in successively less detail.

This strategy results in a view size that is logarithmic in
the size of the list. Moving from one node to another ends
up to be a process much like a binary search, and gives a
diameter of the viewing graph that is also logarithmic.
Thus

EVT(FISHEYE-SAMPLED-LISTn) = (O(log n), O(log n)).

Note that variations of this fisheye sampling strategy can
yield good EVT performance for many other structures,
including 2D and 3D grids. ••

The lesson from examples 4 and 5 is that even if the logical
structure is not EVT, it is possible to make the viewing struc-
ture EVT by adding long-distance links.

•• example 6: fixing the list (version 3) - tree augmentation

In addition to just adding links, one can also adding nodes
to the viewing graph that are not in the original logical
structure. This allows various shortcut paths to share
structure, and reduce the total number of links needed,

Figure 4. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) part of viewing graph of fish-
eye sampled list, showing that out degree is
O(log(n)), (c) sample actually selected from list (d)
view actually given, of size O(log(n)), (e) illustration
of how diameter of viewing graph is now O(log(n)).

(a) (b) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple...

...endive...

ginger

herbs

indigo

jicama

kale...

...mango...

...quince

(d)(c)
and hence the general outdegree. For example, one can
glue a structure known to be EVT onto a given non-EVT
structure. In Figure 2 a tree is glued onto the side of the
list and traversal is predominantly through the tree. Thus
in Figure 2, new nodes are introduced (O(n)), and viewing
links are introduced in the form of a tree. Since the outde-
grees everywhere are of size ≤3, and logarithmic length
paths now exist between the original nodes by going
through the tree, we get

EVT(TREE-AUGMENTED-LISTn) = (O(1), O(log n)). ••

Although there is not enough space here for details, we note
in passing that an EVT analysis of zoomable interfaces is
valuable in clarifying one of their dramatic advantages -- the
diameter of the space is reduced from O(sqrt(n)) to O(log n).
[3][4]

Remarks about Efficient View Traversability

Efficient View Traversability is a minimal essential condition
for view navigation of very large information structures. In a
straight forward way it helps to explain why simple list view-
ers do not scale, why phone books and cone-trees exploit 3D,
why trees and fisheyes and zooms all help.

EVT analysis also suggests strategies for design. One can try
to coerce an information world into a representation which
naturally supports EVT1 and EVT2, e.g., the common prac-
tice of trying to represent things in trees. Alternatively one
can fix a poor structure by adding long-distance links, or add-
ing on another complete structure. Note that in general, the
impact of selectively adding links can be much greater on
decreasing diameter than on increasing view sizes, to net pos-
itive effect. One result of this simple insight is a general ver-
sion of the tree augmentation strategy. In general terms,
gluing any good EVT graph onto a bad one will make a new
structure as good as the good graph in diameter, and not much
worse than the worse of the two in outdegree. I.e., always
remember the strategy of putting a traversable infrastructure
on an otherwise unruly information structure!

Efficiently view traversable structures have an additional
interesting property, “jump and show”: an arbitrary non-nav-
igational jump (e.g., as the result of a query search) from one
location to another has a corresponding view traversal version
with a small rendering: a small number of steps each requir-

Figure 5. Improving EVT of a list by adding a tree.
The resulting structure has constant viewsize but
logarithmic diameter

(a) (c)(b)

Furnas Effective View Navigability November 26, 1996 5

ing a small view will suffice. Thus a short movie or small
map will show the user how they could have done a direct
walk from their old location to their new one. A similar con-
cept was explored for continuous Pan&Zoom in [4].

NAVIGABILITY

Efficient view traversability is not enough: it does little good
if a short traversal path to a destination exists but that path is
unfindable. It must be possible somehow to read the structure
to find good paths; the structure must be view navigable.

For analysis we imagine the simple case of some navigator
process searching for a particular target, proceeding by com-
paring it to information associated with each outlink in its
current view (outlink-info, e.g. a label). From this compari-
son, it decides which link to follow next.

In this paper we will explore an idealization, strong naviga-
bility , requiring that the structure and its outlink-info allow
the navigator (1) to find the shortest path to the target (2)
without error and (3) in a history-less fashion (meaning it can
make the right choice at each step by looking only at what is
visible in the current node). We examine this case because it
is tractable, because it leads to suggestive results, and
because, as a desirable fantasy, its limits are worth under-
standing.

To understand when strong view navigation is possible, a few
definitions are needed. They are illustrated in Figure 6 .

Consider a navigator at some node seeking the shortest path
to a target. A given link is a defensible next step only for cer-

Figure 6 The outlink-info for link A-->i is an enumeration,
and for A-->n is a feature (a shaded circle). These are
both well matched. The link info for links to the right of
A is not-well matched. The residue of f at A is the
shaded-circle label. The residue of e at A is its appear-
ance in the enumeration label. The node g has residue
in the upper right enumeration label at A, but it is not
good residue. The node h has no residue at A.

Link A-->n A-->u A-->i A-->d

to-set {c,f,k,p,r,s} {c,f,u,p,s} {e,i,m,t} {b,d,g,h,j,l,o,q,s}

outlink-info

inferred to-set <c,f,k,p,r,s> <g,x,y,z> <e,i,m,t> <?>

g x y z e i m t

f
p

c

t
h

r

u

i

o

g

j

k n

l b

e

s

m

A

d

q

e i m t

g x y z

tain targets -- the link must be on a shortest path to those tar-
gets. We call this set of targets the to-set of the link, basically
the targets the link efficiently “leads to”. If the navigator’s tar-
get is in the to-set of a link, it can follow that link.

We assume, however, that the navigator does not know the to-
set of a link directly; it is a global property of the structure of
the graph. The navigator only has access to the locally avail-
able outlink-info which it will match against its target to
decide what link to take. We define the inferred-to-set of a
link to be the set of all target nodes that the associated out-
link-info would seem to indicate is down that link (the targets
that would match the outlink-info), which could be a different
set entirely.

In fact, we say that the outlink-info of a link is not misleading
with respect to a target when the target being in the inferred-
to-set implies it is in the true to-set, or in other words when
the outlink-info does not mislead the navigator to take a step
it should not take. (Note that the converse is not being
required here; the outlink-info need not be complete, and may
underspecify its true-to-set.)

Next we say that the outlink-info of node as a whole is said to
be well-matched with respect to a target if none of its outlink-
info is misleading with respect to that target, and if the target
is in the inferred-to-set of at least one outlink. Further we say
that the outlink information at a node is simply well-matched
iff it is well-matched with respect to all possible targets.

We now state the following straightforward proposition:

Proposition (navigability): The navigator is guaran-
teed to always find shortest paths to targets iff the
outlink-info is everywhere well-matched.

Hence, the following requirement for a strongly navigable
world:

Requirement VN1(navigability): The outlink-info
must be everywhere well matched.

The critical observation in all this for designing navigable
information systems is that, to be navigable, the outlink-info
of a link must in some sense describe not just the next node,
but the whole to-set. This is a problem in many hypertext sys-
tems, including the WWW: Their link-labels indicate adja-
cent nodes and do not tell what else lies beyond, in the whole
to-set. In a sense, for navigation purposes, “highway signage”
might be a better metaphor for good outlink-info than “label”.
The information has to convey what is off in that direction,
off along that route, rather than just where it will get to next.
As we will see shortly, this is a difficult requirement in prac-
tice.

First, however, we turn the analysis on its head. The perspec-
tive so far has been in terms of how the world looks to a navi-
gator that successively follows outlinks using outlink-info
until it gets to its target: the navigator wants a world in which
it can find its target. Now let us think about the situation from
the other side -- how the world looks from the perspective of
a target, with the assumption that targets want a world in
which they can be found. This complementary perspective
brings up the important notion of residue or scent .The resi-

Furnas Effective View Navigability November 26, 1996 6

due or scent of a target is the remote indication of that target
in outlink-info throughout the information structure. More
precisely, a target has residue at a link if the associated out-
link-info would lead the navigator to take that link in pursuit
of the given target, i.e., to put the target in the inferred-to-set
of the link. If the navigator was not being mislead, i.e, the
outlink-info was well-matched for that target, then we say the
residue was good residue for the target.(Refer back to the
caption of Figure 6).

An alternate formulation of the Navigability proposition says
that in order to be findable by navigation from anywhere in
the structure, a target must have good residue at every node.
I.e., in order to be able to find a target, the navigator must
have some scent, some residue, of it, no matter where the
navigator is, to begin chasing down its trail.

Furthermore, if every target is to be findable, we need the fol-
lowing requirement, really an alternate statement of VN1:

Requirement VN1a (residue distribution): Every
node must have good residue at every other node.

This is a daunting challenge. There are numerous examples
of real world information structures without good residue dis-
tribution. Consider the WWW. You want to find some target
from your current location, but do not have a clue of how to
navigate there because your target has no good-residue here.
There is no trace of it in the current view. This is a fundamen-
tal reason why the WWW is not navigable. For another
example consider pan&zoom interfaces to information
worlds, like PAD[5]. If you zoom out too far, your target can
become unrecognizable, or disappear entirely leaving no resi-
due, and you cannot navigate back to it. This has lead to a
notion of semantic zooming [1] [5] , where the appearance of
an object changes as its size changes so that it stays visually
comprehensible, or at least visible -- essentially a design
move to preserve good residue.

The VN1 requirements are difficult basically because of the
following scaling constraint.

Requirement VN2. Outlink-info must be “small”.

To understand this requirement and its impact, consider that
one way to get perfect matching or equivalently perfect glo-
bal residue distributions would be to have an exhaustive list,
or enumeration, of the to-set as the outlink-info for each link
(i.e., each link is labeled by listing the complete set of things
it “leads to”, as in the label of the lower left outlink from node
A in). Thus collectively between all the outlinks at each node
there is a full listing of the structure, and such a complete
union list must exist at each node. This “enumeration” strat-
egy is presumably not feasible for view navigation since,
being O(n2), it does not scale well. Thus, the outlink-info
must somehow accurately specify the corresponding to-set in
some way more efficient than enumeration, using more con-
ceptually complex representations, requiring semantic
notions like attributes (Red) and abstraction (LivingThings).

The issues underlying good residue, its representation and
distribution, are intriguing and complex. Only a few modest
observations will be listed here.

Remarks on View Navigability

Trees revisited. One of the most familiar navigable informa-
tion structures is a rooted tree in the form of classification
hierarchies like biological taxonomies or simple library clas-
sification schemes like the dewey decimal system. In the tra-
versability section of this paper, balanced trees in their
completely unlabeled form were hailed as having good tra-
versal properties just as graphs. Here there is an entirely dif-
ferent point: a systematic labeling of a rooted tree as a
hierarchy can make it in addition a reasonably navigable
structure. Starting at the root of a biological taxonomy, one
can take Cat as a target and decide in turn, is it an Animal or a
Plant, is it a Vertebrate or Invertebrate, etc. and with enough
knowledge enough about cats, have a reasonable (though not
certain!) chance of navigating the way down to the Cat leaf
node in the structure. This is so familiar it seems trivial, but it
is not.

First let us understand why the hierarchy works in terms of
the vocabulary of this paper. There is well matched out-link
info at each node along the way: the Vertebrate label leads to
the to-set of vertebrates, etc. and the navigator is not misled.
Alternately, note that the Cat leaf-node has good residue
everywhere. This is most explicit in the Animal, Vertebrate,
Mammal,... nodes along the way from the root, but there is
also implicit good residue throughout the structure. At the
Maple node, in addition to the SugarMaple and NorwayMa-
ple children, neither of which match Cat, there is the upward
outlink returning towards the root, implicitly labeled “The
Rest”, which Cat does match, and which is good residue. This
superficial explanation has beneath it a number of critical
subtleties, general properties of the semantic labeling scheme
that rely on the richness of the notion of cat, the use of large
semantic categories, and the subtle web woven from of these
categories. These subtleties, all implied by the theory of view
navigation and efficient traversability not only help explain
why hierarchies work when they do, but also give hints how
other structures, like hypertext graphs of the world wide web,
might be made navigable.

To understand the navigation challenge a bit, consider the
how bad things could be.

The spectre of essential non-navigability. Cons ider tha t
Requirement VN2 implies that typically the minimum
description length of the to-sets must be small compared to
the size of those sets. In information theory that is equivalent
to requiring that the to-sets are not random. Thus,

•• example 7: non-navigable 1 - completely unrelated items.

A set of n completely unrelated things is intrinsically not
navigable. To see this consider an abstract alphabet of size
n. Any subset (e.g., a to-set) is information full, with no
structure or redundancy, and an individual set cannot be
specified except by enumeration. As a result it is not hard
to show there is no structure for organizing these n things,
whose outlinks can be labeled except with predominant

Furnas Effective View Navigability November 26, 1996 7

use of enumeration5, and so overall VN2 would be vio-
lated. ••

Such examples help in understanding navigability in the
abstract, and raise the point that insofar as the real world is
like such sets (is the web too random?), designing navigable
systems is going to be hard. Having set two extremes, the rea-
sonably navigable and the unnavigable, consider next a num-
ber of general deductions about view navigation.

Navigability requires representation of many sets. Every
link has an associated toset that must be labeled. This means
that the semantics of the domain must be quite rich to allow
all these sets to have appropriate characterizations (like,
RedThings, Cars, ThingsThatSleep). Similarly since a target
must have residue at every node, each target must belong to n
of these sets -- in stark contrast to the impoverished semantics
of the purely random non-navigable example.

Navigability requires an interlocking web of set
representations. Furthermore, these to-sets are richly inter-
dependent. Consider the local part of some structure shown in
Figure 7. Basically, the navigator should go to y to get to the

targets available from y. In other words the to-set, A, out of x ,
is largely made up of the to-sets B and C out of neighboring y.
(The exceptions, which are few in many structures, are those
targets with essentially an equally good path from x and y.)
This indicates that a highly constrained interlocking web of
tosets and corresponding semantics and labels must be
woven. In a hierarchy the to-sets moving from the root form
successive partitions and view navigability is obtained by
labeling those links with category labels that semantically
carve up the sets correspondingly. Animals leads, not to
“BrownThings” and “LargeThings” but to Vertebrates and
Invertebrates -- a conceptual partition the navigator can
decode mirroring an actual partition in the toset. Other struc-
tures do not often admit such nice partitioning semantics. It is
unclear what other structures have to-sets and webs of seman-
tic labelings that can be made to mirror each other.

Residue as a shared resource. Since ubiquitous enumera-
tion is not feasible, each target does not get its own explicit
listing in outlink-info everywhere. It follows that in some
sense, targets must typically share residue. The few bits of
outlink-info are a scarce resource whose global distribution
must be carefully structured, and not left to grow willy-nilly.
To see this consider putting a new page up on the web. In the-
ory, for strong navigability, every other node in the net must
suddenly have good residue for this new page! Note how
cleverly this can be handled in a carefully crafted hierarchy.

5 Technically, use of enumeration must dominate but need not
be ubiquitous. Some equivalent of the short label “the rest” can
be used for some links, but this can be shown not to rescue the
situation.

x
A

C

B
y

Figure 7. Two adjacent nodes, x and y, in a structure.
The to-sets associated with each outlink are
labeled in upper case.

All the many vertebrates share the short Vertebrate label as
residue. Global distribution is maintained by the careful
placement of new items: put a new vertebrate in the right
branch of the tree, and it shares the existing good residue. It is
probably no accident that the emerging large navigable sub-
structures over the web, e.g. Yahoo!, arise in a carefully
crafted hierarchical overlay with careful administrative super-
vision attending to the global distribution of this scare residue
resource.

Similarity-based navigation. One interesting class of naviga-
ble structures makes use of similarity both to organize the
structure and run the navigator. Objects are at nodes, and
there is some notion of similarity between objects. The out-
link-info of a link simply indicates the object at other end of
link. The navigator can compute the similarity between
objects, and chooses the outlink whose associated object is
most similar to its ultimate target, in this way hill-climbing up
a similarity gradient until the target is reached. One might
navigate through color space in this way, moving always
towards the neighboring color that is most similar to the tar-
get. Or one might try to navigate through the WWW by
choosing an adjacent page that seems most like what one is
pursuing (this would be likely to fail in general).

Similarity based navigation requires that nodes for similar
objects be pretty closely linked in the structure, but that is not
sufficient. There can be sets of things which have differential
similarity (not completely unrelated as in the non-navigable
example 6), and which can be linked to reflect that similarity
perfectly, but which are still fundamentally non-navigable,
essentially because all similarity is purely local, and so there
is no good-residue of things far away.

•• example 8: non-navigable set 2 - locally related structure.

This example concerns sets with arbitrary similarity struc-
ture but only local semantics, and that are hence non-nav-
igable.Take any graph of interest, for example the line
graph below. Take an alphabet as large as the number of
links in the graph, and randomly assign the letters to the
links. Now make “objects” at the nodes that are collec-
tions of the letters on the adjacent links:

Despite the fact that “similar” objects are adjacent in this
organization, there is no way to know how to get from,
say, LG to anything other than its immediate neighbors:
There is no good-residue of things far away ••

This example might be a fair approximation to the WWW --
pages might indeed be similar, or at least closely related, to
their neighbors, yet it is in general a matter of relatively
small, purely local features, and cannot support navigation.

Weaker models of navigability. Suppose we were to relax
strong navigability, for example abandoning the need for
every target to have residue at the current node. Even then
resource constraints dictate that it be possible to explore in a
small amount of time and find appropriate good residue.This
suggests that this relaxation will not dramatically alter the
general conclusions. Imagine that you could sit at a node and
send out a pack of seeing-eye bloodhounds looking for scent
at each step. This really amounts to just changing the viewing

J P B X L G V M T N S

J JP PB BX XL LG GV VM MT TN NS S

Furnas Effective View Navigability November 26, 1996 8

graph, including the sphere that the bloodhounds can see
(smell?) into the “viewed” neighbors. The constraints on how
many hounds and how long they can explore basically
remains a constraint on outdegree in the revised graph.

Combining EVT + VN = Effective View Navigability (EVN)

If we want an information structure that is both efficiently tra-
versable, and is strongly view navigable, then both the
mechanical constraints of EVT on diameter and outdegree
and the residue constraints of VN must hold. In this section
we make some informal observations about how the two sets
of constraints interact.

Large scale semantics dominate. Since by assumption
everything can be reached from a given node, the union of the
to-sets at each node form the whole set of n items in the struc-
ture. If there are v links leaving the node, the average size of
the to-set is n/v. If the structure satisfies EVT2, then v is small
compared to n, so the average to-set is quite large.

The significance of this is that VN1 requires that outlink-info
faithfully represent these large to-sets. If we assume the rep-
resentations are related to the semantics of objects, and that
representations of large sets are in some sense high level
semantics, it follows that high level semantics play a domi-
nant role in navigable structures. In a hierarchy this is seen in
both the broad category labels like Animal and Plant, and in
the curious “the rest” labels. The latter can be used in any
structure, but are quite constrained (e.g., they can only be
used for one outlink per node), so there is considerable stress
on more meaningful coarse-grain semantics. So if for exam-
ple the natural semantics of a domain mostly allow the speci-
fication of small sets, one might imagine intrinsic trouble for
navigation. (Note that Example 8 has this problem.)

Carving up the world efficiently. Earlier it was noted that the
to-sets of a structure form a kind of overlapping mosaic
which, by VN1 must be mirrored in the outlink-info. Enforc-
ing the diameter requirement of EVT2 means the neighboring
to-sets have to differ more dramatically. Consider by contrast
the to-sets of the line graph, a graph with bad diameter. There
the to-sets change very slowly as one moves along, with only
one item being eliminated at a time. It is possible to show (see
[3]) that under EVT2 the overlap pattern of to-sets must be
able to whittle down the space of alternatives in a small num-
ber of intersections. The efficiency of binary partitioning is
what makes a balanced binary tree satisfy EVT2, but a very
unbalanced one not. Correspondingly an efficiently view nav-
igable hierarchy has semantics that partition into equal size
sets, yielding navigation by fast binary search. More gener-
ally, whatever structure, the semantics of the domain must
carve it up efficiently.

Summary and Discussion

The goal of the work presented here has been to gain under-
standing of view navigation, with the basic premise that scale
issues are critical. The simple mechanics of traversal require
design of the logical structure and its viewing strategy so as to
make efficient uses of time and space, by coercing things into
known EVT structures, adding long distance links, or gluing
on navigational backbones. Navigation proper requires that
all possible targets have good residue throughout the struc-

ture. Equivalently, labeling must reflect a link’s to-set, not just
the neighboring node. This requires the rich semantic repre-
sentation of a web of interlocking sets, many of them large,
that efficiently carve up the contents of the space.

Together these considerations help to understand reasons why
some information navigation schemes are,

bad: the web in general (bad residue, diameter), simple
scrolling lists (bad diameter)

mixed: geometric zoom (good diameter, poor residue),

good: semantic zoom (better residue), 3D(shorter paths),
fisheyes (even shorter paths), balanced rooted trees (short
paths and possible simple semantics)

The problem of global residue distribution is very difficult.
The taxonomies implemented in rooted trees are about the
best we have so far, but even they are hard to design and use
for all purposes. New structures should be explored (e.g.,
hypercubes, DAG’s, multitrees), but one might also consider
hybrid strategies to overcome the limits of pure navigation,
including synergies between query and navigation. For exam-
ple, global navigability may not be achievable, but local navi-
gability may be - e.g., structures where residue is distributed
reasonably only within a limited radius of a target. Then if
there is some other way to get to the right neighborhood (e.g.,
as the result of an query), it may be possible to navigate the
rest of the way. The result is query initiated browsing, an
emerging paradigm on the web. Alternatively, one might ease
the residue problem by allowing dynamic outlink-info, for
example relabeling outlinks by the result of an ad-hoc query
of the structure.

Acknowledgments. This work was supported in part by
ARPA grant N66001-94-C-6039.

REFERENCES
1. Bederson, B. B. and Hollan, J. D., PAD++: zooming graphi-

cal interface for exploring alternate interface physics. In
Proceedings of ACM UIST’94, (Marina Del Ray, CA, 1994),
ACM Press, pp 17-26.

2. Card, S. K., Pirolli, P., and Mackinlay, J. D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Pro-
ceedings of CHI’94 Human Factors in Computing Systems
(Boston, MA, April 1994), ACM press, pp. 238-244.

3. Furnas, G.W., Effectively View-Navigable Structures. Paper
presented at the 1995 Human Computer Interaction Consor-
tium Workshop (HCIC95), Snow Mountain Ranch, Colo-
rado Feb 17, 1995. Manuscript available at http://
http2.si.umich.edu/~furnas/POSTSCRIPTS/
EVN.HCIC95.workshop.paper.ps

4. Furnas, G. W., and Bederson, B., Space-Scale Diagrams:
Understanding Multiscale Interfaces. In Human Factors in
Computing Systems, CHI’95 Conference Proceedings
(ACM), Denver, Colorado, May 8-11, 1995, 234-201.

5. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface. In Proceedings of ACM SigGraph `93
(Anaheim, CA), 1993, pp. 57-64.

6. Robertson, G. G., Mackinlay, J.D., and Card, S.K., Cone
trees: animated 3D visualizations of hierarchical informa-
tion. CHI’91 Proceedings, 1991, 189-194.

ABSTRACT

In view navigation a user moves about an information struc-
ture by selecting something in the current view of the struc-
ture. This paper explores the implications of rudimentary
requirements for effective view navigation, namely that,
despite the vastness of an information structure, the views
must be small, moving around must not take too many steps
and the route to any target be must be discoverable. The
analyses help rationalize existing practice, give insight into
the difficulties, and suggest strategies for design.

KEYWORDS: Information navigation, Direct Walk, large
information structures, hypertext, searching, browsing

INTRODUCTION

When the World Wide Web (WWW) first gained popularity,
those who used it were impressed by the richness of the con-
tent accessible simply by wandering around and clicking
things seen on the screen. Soon after, struck by the near
impossibility of finding anything specific, global navigation
was largely abandoned in place of search engines. What went
wrong with pure navigation?

This work presented here seeks theoretical insight into, in
part, the problems with pure navigational access on the web.
More generally, it explores some basic issues in moving
around and finding things in various information structures,
be they webs, trees, tables, or even simple lists. The focus is
particularly on issues that arise as such structures get very
large, where interaction is seriously limited by the available
resources of space (e.g., screen real estate) and time (e.g.,
number of interactions required to get somewhere): How do
these limits in turn puts constraints on what kinds of informa-
tion structures and display strategies lead to effective naviga-
tion? How have these constraints affected practice, and how
might we live with them in future design?

We will be considering systems with static structure over
which users must navigate to find things, e.g., lists, trees,

planes, grids, graphs. The structure is assumed to contain ele-
ments of some sort (items in a list, nodes in a hypertext
graph) organized in some logical structure. We assume that
the interface given to the user is navigational, i.e., the user at
any given time is “at” some node in the structure with a view
specific to that node (e.g., of the local neighborhood), and has
the ability to move next to anything in that current view. For
example for a list the user might have window centered on a
particular current item. A click on an item at the bottom of
the window would cause that item to scroll up and become
the new “current” item in the middle of the window. In a
hypertext web, a user could follow one of the visible links in
the current hypertext page.

In this paper we will first examine view traversal, the under-
lying iterative process of viewing, selecting something seen,
and moving to it, to form a path through the structure.1 Then
we will look at the more complex view navigation where in
addition the selections try to be informed and reasonable in
the pursuit of a desired target. Thus view traversal ignores
how to decide where to go next, for view navigation that is
central.The goal throughout is to understand the implications
of resource problems arising as structures get very large.

EFFICIENT VIEW TRAVERSIBILITY

What are the basic requirements for efficient view traversal?
I.e., what are the minimal capabilities for moving around by
viewing, selecting and moving which, if not met, will make
large information structures, those encompassing thousands,
even billions of items, impractical for navigation.

Definitions and Fundamental Requirements

We assume that the elements of the information structure (the
items in a list, nodes in a hypertext graph, etc.) are organized
in a logical structure that can be characterized by a logical
structure graph, connecting elements to their logical neigh-
bors as dictated by the semantics of the domain.2 For an
ordered list this would just be line graph, with each item con-
nected to the items which proceed and follow it. For a hyper-

1 This is the style of interaction was called a direct walk by
Card, et al [2]. We choose the terminology “view traversal”
here to make explicit the view aspect, since we wish to study
the use of spatial resources needed for viewing.
2 More complete definitions, and proofs of most of the mate-
rial in this paper can be found in [3]

Effective View Navigation

George W. Furnas
School of Information
University of Michigan

(313) 763-0076
furnas@umich.edu

To appear in Human Factors in Computing Systems, CHI’97 Conference Proceedings (ACM), Atlanta GA, March 22-27, 1997.

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list

Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT(SCROLLING-LISTn) = (O(1), O(n)), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

Furnas Effective View Navigability November 26, 1996 3

Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.

Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT(BALANCED-REGULAR-TREEn) = (O(1), O(log n)) ••

•• example 3: local viewing of a hypercube

Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT(HYPERCUBEn) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures
What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions

One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT(MULTI-COLUMN-LISTn) = (O(1), O(sqrt(n)).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4 Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 4

illustrated in Figure 3 (e), where the part of the viewing
graph in (c) is shown in the unfolded version of the list.••

The critical thing to note in the example is that some of the
links of the viewing graph point to nodes that are not local in
the logical structure of the graph. This is a very general class
of strategies for decreasing the diameter of the viewing graph,
further illustrated in the next example.

•• example 5: fixing the list (version 2) - fisheye sampling

It is possible to use non-local viewing links to improve
even further the view-traversability of a list. Figure 3
shows a viewing strategy where the nodes included in a
view are spaced in a geometric series. That is, from the
current node, one can see the nodes that are at a distance
1, 2, 4, 8, 16,... away in the list. This sampling pattern
might be called a kind of fisheye sampling, in that it
shows the local part of the list in most detail, and further
regions in successively less detail.

This strategy results in a view size that is logarithmic in
the size of the list. Moving from one node to another ends
up to be a process much like a binary search, and gives a
diameter of the viewing graph that is also logarithmic.
Thus

EVT(FISHEYE-SAMPLED-LISTn) = (O(log n), O(log n)).

Note that variations of this fisheye sampling strategy can
yield good EVT performance for many other structures,
including 2D and 3D grids. ••

The lesson from examples 4 and 5 is that even if the logical
structure is not EVT, it is possible to make the viewing struc-
ture EVT by adding long-distance links.

•• example 6: fixing the list (version 3) - tree augmentation

In addition to just adding links, one can also adding nodes
to the viewing graph that are not in the original logical
structure. This allows various shortcut paths to share
structure, and reduce the total number of links needed,

Figure 4. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) part of viewing graph of fish-
eye sampled list, showing that out degree is
O(log(n)), (c) sample actually selected from list (d)
view actually given, of size O(log(n)), (e) illustration
of how diameter of viewing graph is now O(log(n)).

(a) (b) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple...

...endive...

ginger

herbs

indigo

jicama

kale...

...mango...

...quince

(d)(c)
and hence the general outdegree. For example, one can
glue a structure known to be EVT onto a given non-EVT
structure. In Figure 2 a tree is glued onto the side of the
list and traversal is predominantly through the tree. Thus
in Figure 2, new nodes are introduced (O(n)), and viewing
links are introduced in the form of a tree. Since the outde-
grees everywhere are of size ≤3, and logarithmic length
paths now exist between the original nodes by going
through the tree, we get

EVT(TREE-AUGMENTED-LISTn) = (O(1), O(log n)). ••

Although there is not enough space here for details, we note
in passing that an EVT analysis of zoomable interfaces is
valuable in clarifying one of their dramatic advantages -- the
diameter of the space is reduced from O(sqrt(n)) to O(log n).
[3][4]

Remarks about Efficient View Traversability

Efficient View Traversability is a minimal essential condition
for view navigation of very large information structures. In a
straight forward way it helps to explain why simple list view-
ers do not scale, why phone books and cone-trees exploit 3D,
why trees and fisheyes and zooms all help.

EVT analysis also suggests strategies for design. One can try
to coerce an information world into a representation which
naturally supports EVT1 and EVT2, e.g., the common prac-
tice of trying to represent things in trees. Alternatively one
can fix a poor structure by adding long-distance links, or add-
ing on another complete structure. Note that in general, the
impact of selectively adding links can be much greater on
decreasing diameter than on increasing view sizes, to net pos-
itive effect. One result of this simple insight is a general ver-
sion of the tree augmentation strategy. In general terms,
gluing any good EVT graph onto a bad one will make a new
structure as good as the good graph in diameter, and not much
worse than the worse of the two in outdegree. I.e., always
remember the strategy of putting a traversable infrastructure
on an otherwise unruly information structure!

Efficiently view traversable structures have an additional
interesting property, “jump and show”: an arbitrary non-nav-
igational jump (e.g., as the result of a query search) from one
location to another has a corresponding view traversal version
with a small rendering: a small number of steps each requir-

Figure 5. Improving EVT of a list by adding a tree.
The resulting structure has constant viewsize but
logarithmic diameter

(a) (c)(b)

Furnas Effective View Navigability November 26, 1996 5

ing a small view will suffice. Thus a short movie or small
map will show the user how they could have done a direct
walk from their old location to their new one. A similar con-
cept was explored for continuous Pan&Zoom in [4].

NAVIGABILITY

Efficient view traversability is not enough: it does little good
if a short traversal path to a destination exists but that path is
unfindable. It must be possible somehow to read the structure
to find good paths; the structure must be view navigable.

For analysis we imagine the simple case of some navigator
process searching for a particular target, proceeding by com-
paring it to information associated with each outlink in its
current view (outlink-info, e.g. a label). From this compari-
son, it decides which link to follow next.

In this paper we will explore an idealization, strong naviga-
bility , requiring that the structure and its outlink-info allow
the navigator (1) to find the shortest path to the target (2)
without error and (3) in a history-less fashion (meaning it can
make the right choice at each step by looking only at what is
visible in the current node). We examine this case because it
is tractable, because it leads to suggestive results, and
because, as a desirable fantasy, its limits are worth under-
standing.

To understand when strong view navigation is possible, a few
definitions are needed. They are illustrated in Figure 6 .

Consider a navigator at some node seeking the shortest path
to a target. A given link is a defensible next step only for cer-

Figure 6 The outlink-info for link A-->i is an enumeration,
and for A-->n is a feature (a shaded circle). These are
both well matched. The link info for links to the right of
A is not-well matched. The residue of f at A is the
shaded-circle label. The residue of e at A is its appear-
ance in the enumeration label. The node g has residue
in the upper right enumeration label at A, but it is not
good residue. The node h has no residue at A.

Link A-->n A-->u A-->i A-->d

to-set {c,f,k,p,r,s} {c,f,u,p,s} {e,i,m,t} {b,d,g,h,j,l,o,q,s}

outlink-info

inferred to-set <c,f,k,p,r,s> <g,x,y,z> <e,i,m,t> <?>

g x y z e i m t

f
p

c

t
h

r

u

i

o

g

j

k n

l b

e

s

m

A

d

q

e i m t

g x y z

tain targets -- the link must be on a shortest path to those tar-
gets. We call this set of targets the to-set of the link, basically
the targets the link efficiently “leads to”. If the navigator’s tar-
get is in the to-set of a link, it can follow that link.

We assume, however, that the navigator does not know the to-
set of a link directly; it is a global property of the structure of
the graph. The navigator only has access to the locally avail-
able outlink-info which it will match against its target to
decide what link to take. We define the inferred-to-set of a
link to be the set of all target nodes that the associated out-
link-info would seem to indicate is down that link (the targets
that would match the outlink-info), which could be a different
set entirely.

In fact, we say that the outlink-info of a link is not misleading
with respect to a target when the target being in the inferred-
to-set implies it is in the true to-set, or in other words when
the outlink-info does not mislead the navigator to take a step
it should not take. (Note that the converse is not being
required here; the outlink-info need not be complete, and may
underspecify its true-to-set.)

Next we say that the outlink-info of node as a whole is said to
be well-matched with respect to a target if none of its outlink-
info is misleading with respect to that target, and if the target
is in the inferred-to-set of at least one outlink. Further we say
that the outlink information at a node is simply well-matched
iff it is well-matched with respect to all possible targets.

We now state the following straightforward proposition:

Proposition (navigability): The navigator is guaran-
teed to always find shortest paths to targets iff the
outlink-info is everywhere well-matched.

Hence, the following requirement for a strongly navigable
world:

Requirement VN1(navigability): The outlink-info
must be everywhere well matched.

The critical observation in all this for designing navigable
information systems is that, to be navigable, the outlink-info
of a link must in some sense describe not just the next node,
but the whole to-set. This is a problem in many hypertext sys-
tems, including the WWW: Their link-labels indicate adja-
cent nodes and do not tell what else lies beyond, in the whole
to-set. In a sense, for navigation purposes, “highway signage”
might be a better metaphor for good outlink-info than “label”.
The information has to convey what is off in that direction,
off along that route, rather than just where it will get to next.
As we will see shortly, this is a difficult requirement in prac-
tice.

First, however, we turn the analysis on its head. The perspec-
tive so far has been in terms of how the world looks to a navi-
gator that successively follows outlinks using outlink-info
until it gets to its target: the navigator wants a world in which
it can find its target. Now let us think about the situation from
the other side -- how the world looks from the perspective of
a target, with the assumption that targets want a world in
which they can be found. This complementary perspective
brings up the important notion of residue or scent .The resi-

Furnas Effective View Navigability November 26, 1996 6

due or scent of a target is the remote indication of that target
in outlink-info throughout the information structure. More
precisely, a target has residue at a link if the associated out-
link-info would lead the navigator to take that link in pursuit
of the given target, i.e., to put the target in the inferred-to-set
of the link. If the navigator was not being mislead, i.e, the
outlink-info was well-matched for that target, then we say the
residue was good residue for the target.(Refer back to the
caption of Figure 6).

An alternate formulation of the Navigability proposition says
that in order to be findable by navigation from anywhere in
the structure, a target must have good residue at every node.
I.e., in order to be able to find a target, the navigator must
have some scent, some residue, of it, no matter where the
navigator is, to begin chasing down its trail.

Furthermore, if every target is to be findable, we need the fol-
lowing requirement, really an alternate statement of VN1:

Requirement VN1a (residue distribution): Every
node must have good residue at every other node.

This is a daunting challenge. There are numerous examples
of real world information structures without good residue dis-
tribution. Consider the WWW. You want to find some target
from your current location, but do not have a clue of how to
navigate there because your target has no good-residue here.
There is no trace of it in the current view. This is a fundamen-
tal reason why the WWW is not navigable. For another
example consider pan&zoom interfaces to information
worlds, like PAD[5]. If you zoom out too far, your target can
become unrecognizable, or disappear entirely leaving no resi-
due, and you cannot navigate back to it. This has lead to a
notion of semantic zooming [1] [5] , where the appearance of
an object changes as its size changes so that it stays visually
comprehensible, or at least visible -- essentially a design
move to preserve good residue.

The VN1 requirements are difficult basically because of the
following scaling constraint.

Requirement VN2. Outlink-info must be “small”.

To understand this requirement and its impact, consider that
one way to get perfect matching or equivalently perfect glo-
bal residue distributions would be to have an exhaustive list,
or enumeration, of the to-set as the outlink-info for each link
(i.e., each link is labeled by listing the complete set of things
it “leads to”, as in the label of the lower left outlink from node
A in). Thus collectively between all the outlinks at each node
there is a full listing of the structure, and such a complete
union list must exist at each node. This “enumeration” strat-
egy is presumably not feasible for view navigation since,
being O(n2), it does not scale well. Thus, the outlink-info
must somehow accurately specify the corresponding to-set in
some way more efficient than enumeration, using more con-
ceptually complex representations, requiring semantic
notions like attributes (Red) and abstraction (LivingThings).

The issues underlying good residue, its representation and
distribution, are intriguing and complex. Only a few modest
observations will be listed here.

Remarks on View Navigability

Trees revisited. One of the most familiar navigable informa-
tion structures is a rooted tree in the form of classification
hierarchies like biological taxonomies or simple library clas-
sification schemes like the dewey decimal system. In the tra-
versability section of this paper, balanced trees in their
completely unlabeled form were hailed as having good tra-
versal properties just as graphs. Here there is an entirely dif-
ferent point: a systematic labeling of a rooted tree as a
hierarchy can make it in addition a reasonably navigable
structure. Starting at the root of a biological taxonomy, one
can take Cat as a target and decide in turn, is it an Animal or a
Plant, is it a Vertebrate or Invertebrate, etc. and with enough
knowledge enough about cats, have a reasonable (though not
certain!) chance of navigating the way down to the Cat leaf
node in the structure. This is so familiar it seems trivial, but it
is not.

First let us understand why the hierarchy works in terms of
the vocabulary of this paper. There is well matched out-link
info at each node along the way: the Vertebrate label leads to
the to-set of vertebrates, etc. and the navigator is not misled.
Alternately, note that the Cat leaf-node has good residue
everywhere. This is most explicit in the Animal, Vertebrate,
Mammal,... nodes along the way from the root, but there is
also implicit good residue throughout the structure. At the
Maple node, in addition to the SugarMaple and NorwayMa-
ple children, neither of which match Cat, there is the upward
outlink returning towards the root, implicitly labeled “The
Rest”, which Cat does match, and which is good residue. This
superficial explanation has beneath it a number of critical
subtleties, general properties of the semantic labeling scheme
that rely on the richness of the notion of cat, the use of large
semantic categories, and the subtle web woven from of these
categories. These subtleties, all implied by the theory of view
navigation and efficient traversability not only help explain
why hierarchies work when they do, but also give hints how
other structures, like hypertext graphs of the world wide web,
might be made navigable.

To understand the navigation challenge a bit, consider the
how bad things could be.

The spectre of essential non-navigability. Cons ider tha t
Requirement VN2 implies that typically the minimum
description length of the to-sets must be small compared to
the size of those sets. In information theory that is equivalent
to requiring that the to-sets are not random. Thus,

•• example 7: non-navigable 1 - completely unrelated items.

A set of n completely unrelated things is intrinsically not
navigable. To see this consider an abstract alphabet of size
n. Any subset (e.g., a to-set) is information full, with no
structure or redundancy, and an individual set cannot be
specified except by enumeration. As a result it is not hard
to show there is no structure for organizing these n things,
whose outlinks can be labeled except with predominant

Furnas Effective View Navigability November 26, 1996 7

use of enumeration5, and so overall VN2 would be vio-
lated. ••

Such examples help in understanding navigability in the
abstract, and raise the point that insofar as the real world is
like such sets (is the web too random?), designing navigable
systems is going to be hard. Having set two extremes, the rea-
sonably navigable and the unnavigable, consider next a num-
ber of general deductions about view navigation.

Navigability requires representation of many sets. Every
link has an associated toset that must be labeled. This means
that the semantics of the domain must be quite rich to allow
all these sets to have appropriate characterizations (like,
RedThings, Cars, ThingsThatSleep). Similarly since a target
must have residue at every node, each target must belong to n
of these sets -- in stark contrast to the impoverished semantics
of the purely random non-navigable example.

Navigability requires an interlocking web of set
representations. Furthermore, these to-sets are richly inter-
dependent. Consider the local part of some structure shown in
Figure 7. Basically, the navigator should go to y to get to the

targets available from y. In other words the to-set, A, out of x ,
is largely made up of the to-sets B and C out of neighboring y.
(The exceptions, which are few in many structures, are those
targets with essentially an equally good path from x and y.)
This indicates that a highly constrained interlocking web of
tosets and corresponding semantics and labels must be
woven. In a hierarchy the to-sets moving from the root form
successive partitions and view navigability is obtained by
labeling those links with category labels that semantically
carve up the sets correspondingly. Animals leads, not to
“BrownThings” and “LargeThings” but to Vertebrates and
Invertebrates -- a conceptual partition the navigator can
decode mirroring an actual partition in the toset. Other struc-
tures do not often admit such nice partitioning semantics. It is
unclear what other structures have to-sets and webs of seman-
tic labelings that can be made to mirror each other.

Residue as a shared resource. Since ubiquitous enumera-
tion is not feasible, each target does not get its own explicit
listing in outlink-info everywhere. It follows that in some
sense, targets must typically share residue. The few bits of
outlink-info are a scarce resource whose global distribution
must be carefully structured, and not left to grow willy-nilly.
To see this consider putting a new page up on the web. In the-
ory, for strong navigability, every other node in the net must
suddenly have good residue for this new page! Note how
cleverly this can be handled in a carefully crafted hierarchy.

5 Technically, use of enumeration must dominate but need not
be ubiquitous. Some equivalent of the short label “the rest” can
be used for some links, but this can be shown not to rescue the
situation.

x
A

C

B
y

Figure 7. Two adjacent nodes, x and y, in a structure.
The to-sets associated with each outlink are
labeled in upper case.

All the many vertebrates share the short Vertebrate label as
residue. Global distribution is maintained by the careful
placement of new items: put a new vertebrate in the right
branch of the tree, and it shares the existing good residue. It is
probably no accident that the emerging large navigable sub-
structures over the web, e.g. Yahoo!, arise in a carefully
crafted hierarchical overlay with careful administrative super-
vision attending to the global distribution of this scare residue
resource.

Similarity-based navigation. One interesting class of naviga-
ble structures makes use of similarity both to organize the
structure and run the navigator. Objects are at nodes, and
there is some notion of similarity between objects. The out-
link-info of a link simply indicates the object at other end of
link. The navigator can compute the similarity between
objects, and chooses the outlink whose associated object is
most similar to its ultimate target, in this way hill-climbing up
a similarity gradient until the target is reached. One might
navigate through color space in this way, moving always
towards the neighboring color that is most similar to the tar-
get. Or one might try to navigate through the WWW by
choosing an adjacent page that seems most like what one is
pursuing (this would be likely to fail in general).

Similarity based navigation requires that nodes for similar
objects be pretty closely linked in the structure, but that is not
sufficient. There can be sets of things which have differential
similarity (not completely unrelated as in the non-navigable
example 6), and which can be linked to reflect that similarity
perfectly, but which are still fundamentally non-navigable,
essentially because all similarity is purely local, and so there
is no good-residue of things far away.

•• example 8: non-navigable set 2 - locally related structure.

This example concerns sets with arbitrary similarity struc-
ture but only local semantics, and that are hence non-nav-
igable.Take any graph of interest, for example the line
graph below. Take an alphabet as large as the number of
links in the graph, and randomly assign the letters to the
links. Now make “objects” at the nodes that are collec-
tions of the letters on the adjacent links:

Despite the fact that “similar” objects are adjacent in this
organization, there is no way to know how to get from,
say, LG to anything other than its immediate neighbors:
There is no good-residue of things far away ••

This example might be a fair approximation to the WWW --
pages might indeed be similar, or at least closely related, to
their neighbors, yet it is in general a matter of relatively
small, purely local features, and cannot support navigation.

Weaker models of navigability. Suppose we were to relax
strong navigability, for example abandoning the need for
every target to have residue at the current node. Even then
resource constraints dictate that it be possible to explore in a
small amount of time and find appropriate good residue.This
suggests that this relaxation will not dramatically alter the
general conclusions. Imagine that you could sit at a node and
send out a pack of seeing-eye bloodhounds looking for scent
at each step. This really amounts to just changing the viewing

J P B X L G V M T N S

J JP PB BX XL LG GV VM MT TN NS S

Furnas Effective View Navigability November 26, 1996 8

graph, including the sphere that the bloodhounds can see
(smell?) into the “viewed” neighbors. The constraints on how
many hounds and how long they can explore basically
remains a constraint on outdegree in the revised graph.

Combining EVT + VN = Effective View Navigability (EVN)

If we want an information structure that is both efficiently tra-
versable, and is strongly view navigable, then both the
mechanical constraints of EVT on diameter and outdegree
and the residue constraints of VN must hold. In this section
we make some informal observations about how the two sets
of constraints interact.

Large scale semantics dominate. Since by assumption
everything can be reached from a given node, the union of the
to-sets at each node form the whole set of n items in the struc-
ture. If there are v links leaving the node, the average size of
the to-set is n/v. If the structure satisfies EVT2, then v is small
compared to n, so the average to-set is quite large.

The significance of this is that VN1 requires that outlink-info
faithfully represent these large to-sets. If we assume the rep-
resentations are related to the semantics of objects, and that
representations of large sets are in some sense high level
semantics, it follows that high level semantics play a domi-
nant role in navigable structures. In a hierarchy this is seen in
both the broad category labels like Animal and Plant, and in
the curious “the rest” labels. The latter can be used in any
structure, but are quite constrained (e.g., they can only be
used for one outlink per node), so there is considerable stress
on more meaningful coarse-grain semantics. So if for exam-
ple the natural semantics of a domain mostly allow the speci-
fication of small sets, one might imagine intrinsic trouble for
navigation. (Note that Example 8 has this problem.)

Carving up the world efficiently. Earlier it was noted that the
to-sets of a structure form a kind of overlapping mosaic
which, by VN1 must be mirrored in the outlink-info. Enforc-
ing the diameter requirement of EVT2 means the neighboring
to-sets have to differ more dramatically. Consider by contrast
the to-sets of the line graph, a graph with bad diameter. There
the to-sets change very slowly as one moves along, with only
one item being eliminated at a time. It is possible to show (see
[3]) that under EVT2 the overlap pattern of to-sets must be
able to whittle down the space of alternatives in a small num-
ber of intersections. The efficiency of binary partitioning is
what makes a balanced binary tree satisfy EVT2, but a very
unbalanced one not. Correspondingly an efficiently view nav-
igable hierarchy has semantics that partition into equal size
sets, yielding navigation by fast binary search. More gener-
ally, whatever structure, the semantics of the domain must
carve it up efficiently.

Summary and Discussion

The goal of the work presented here has been to gain under-
standing of view navigation, with the basic premise that scale
issues are critical. The simple mechanics of traversal require
design of the logical structure and its viewing strategy so as to
make efficient uses of time and space, by coercing things into
known EVT structures, adding long distance links, or gluing
on navigational backbones. Navigation proper requires that
all possible targets have good residue throughout the struc-

ture. Equivalently, labeling must reflect a link’s to-set, not just
the neighboring node. This requires the rich semantic repre-
sentation of a web of interlocking sets, many of them large,
that efficiently carve up the contents of the space.

Together these considerations help to understand reasons why
some information navigation schemes are,

bad: the web in general (bad residue, diameter), simple
scrolling lists (bad diameter)

mixed: geometric zoom (good diameter, poor residue),

good: semantic zoom (better residue), 3D(shorter paths),
fisheyes (even shorter paths), balanced rooted trees (short
paths and possible simple semantics)

The problem of global residue distribution is very difficult.
The taxonomies implemented in rooted trees are about the
best we have so far, but even they are hard to design and use
for all purposes. New structures should be explored (e.g.,
hypercubes, DAG’s, multitrees), but one might also consider
hybrid strategies to overcome the limits of pure navigation,
including synergies between query and navigation. For exam-
ple, global navigability may not be achievable, but local navi-
gability may be - e.g., structures where residue is distributed
reasonably only within a limited radius of a target. Then if
there is some other way to get to the right neighborhood (e.g.,
as the result of an query), it may be possible to navigate the
rest of the way. The result is query initiated browsing, an
emerging paradigm on the web. Alternatively, one might ease
the residue problem by allowing dynamic outlink-info, for
example relabeling outlinks by the result of an ad-hoc query
of the structure.

Acknowledgments. This work was supported in part by
ARPA grant N66001-94-C-6039.

REFERENCES
1. Bederson, B. B. and Hollan, J. D., PAD++: zooming graphi-

cal interface for exploring alternate interface physics. In
Proceedings of ACM UIST’94, (Marina Del Ray, CA, 1994),
ACM Press, pp 17-26.

2. Card, S. K., Pirolli, P., and Mackinlay, J. D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Pro-
ceedings of CHI’94 Human Factors in Computing Systems
(Boston, MA, April 1994), ACM press, pp. 238-244.

3. Furnas, G.W., Effectively View-Navigable Structures. Paper
presented at the 1995 Human Computer Interaction Consor-
tium Workshop (HCIC95), Snow Mountain Ranch, Colo-
rado Feb 17, 1995. Manuscript available at http://
http2.si.umich.edu/~furnas/POSTSCRIPTS/
EVN.HCIC95.workshop.paper.ps

4. Furnas, G. W., and Bederson, B., Space-Scale Diagrams:
Understanding Multiscale Interfaces. In Human Factors in
Computing Systems, CHI’95 Conference Proceedings
(ACM), Denver, Colorado, May 8-11, 1995, 234-201.

5. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface. In Proceedings of ACM SigGraph `93
(Anaheim, CA), 1993, pp. 57-64.

6. Robertson, G. G., Mackinlay, J.D., and Card, S.K., Cone
trees: animated 3D visualizations of hierarchical informa-
tion. CHI’91 Proceedings, 1991, 189-194.

ABSTRACT

In view navigation a user moves about an information struc-
ture by selecting something in the current view of the struc-
ture. This paper explores the implications of rudimentary
requirements for effective view navigation, namely that,
despite the vastness of an information structure, the views
must be small, moving around must not take too many steps
and the route to any target be must be discoverable. The
analyses help rationalize existing practice, give insight into
the difficulties, and suggest strategies for design.

KEYWORDS: Information navigation, Direct Walk, large
information structures, hypertext, searching, browsing

INTRODUCTION

When the World Wide Web (WWW) first gained popularity,
those who used it were impressed by the richness of the con-
tent accessible simply by wandering around and clicking
things seen on the screen. Soon after, struck by the near
impossibility of finding anything specific, global navigation
was largely abandoned in place of search engines. What went
wrong with pure navigation?

This work presented here seeks theoretical insight into, in
part, the problems with pure navigational access on the web.
More generally, it explores some basic issues in moving
around and finding things in various information structures,
be they webs, trees, tables, or even simple lists. The focus is
particularly on issues that arise as such structures get very
large, where interaction is seriously limited by the available
resources of space (e.g., screen real estate) and time (e.g.,
number of interactions required to get somewhere): How do
these limits in turn puts constraints on what kinds of informa-
tion structures and display strategies lead to effective naviga-
tion? How have these constraints affected practice, and how
might we live with them in future design?

We will be considering systems with static structure over
which users must navigate to find things, e.g., lists, trees,

planes, grids, graphs. The structure is assumed to contain ele-
ments of some sort (items in a list, nodes in a hypertext
graph) organized in some logical structure. We assume that
the interface given to the user is navigational, i.e., the user at
any given time is “at” some node in the structure with a view
specific to that node (e.g., of the local neighborhood), and has
the ability to move next to anything in that current view. For
example for a list the user might have window centered on a
particular current item. A click on an item at the bottom of
the window would cause that item to scroll up and become
the new “current” item in the middle of the window. In a
hypertext web, a user could follow one of the visible links in
the current hypertext page.

In this paper we will first examine view traversal, the under-
lying iterative process of viewing, selecting something seen,
and moving to it, to form a path through the structure.1 Then
we will look at the more complex view navigation where in
addition the selections try to be informed and reasonable in
the pursuit of a desired target. Thus view traversal ignores
how to decide where to go next, for view navigation that is
central.The goal throughout is to understand the implications
of resource problems arising as structures get very large.

EFFICIENT VIEW TRAVERSIBILITY

What are the basic requirements for efficient view traversal?
I.e., what are the minimal capabilities for moving around by
viewing, selecting and moving which, if not met, will make
large information structures, those encompassing thousands,
even billions of items, impractical for navigation.

Definitions and Fundamental Requirements

We assume that the elements of the information structure (the
items in a list, nodes in a hypertext graph, etc.) are organized
in a logical structure that can be characterized by a logical
structure graph, connecting elements to their logical neigh-
bors as dictated by the semantics of the domain.2 For an
ordered list this would just be line graph, with each item con-
nected to the items which proceed and follow it. For a hyper-

1 This is the style of interaction was called a direct walk by
Card, et al [2]. We choose the terminology “view traversal”
here to make explicit the view aspect, since we wish to study
the use of spatial resources needed for viewing.
2 More complete definitions, and proofs of most of the mate-
rial in this paper can be found in [3]

Effective View Navigation

George W. Furnas
School of Information
University of Michigan

(313) 763-0076
furnas@umich.edu

To appear in Human Factors in Computing Systems, CHI’97 Conference Proceedings (ACM), Atlanta GA, March 22-27, 1997.

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list

Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT(SCROLLING-LISTn) = (O(1), O(n)), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

Furnas Effective View Navigability November 26, 1996 3

Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.

Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT(BALANCED-REGULAR-TREEn) = (O(1), O(log n)) ••

•• example 3: local viewing of a hypercube

Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT(HYPERCUBEn) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures
What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions

One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT(MULTI-COLUMN-LISTn) = (O(1), O(sqrt(n)).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4 Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 4

illustrated in Figure 3 (e), where the part of the viewing
graph in (c) is shown in the unfolded version of the list.••

The critical thing to note in the example is that some of the
links of the viewing graph point to nodes that are not local in
the logical structure of the graph. This is a very general class
of strategies for decreasing the diameter of the viewing graph,
further illustrated in the next example.

•• example 5: fixing the list (version 2) - fisheye sampling

It is possible to use non-local viewing links to improve
even further the view-traversability of a list. Figure 3
shows a viewing strategy where the nodes included in a
view are spaced in a geometric series. That is, from the
current node, one can see the nodes that are at a distance
1, 2, 4, 8, 16,... away in the list. This sampling pattern
might be called a kind of fisheye sampling, in that it
shows the local part of the list in most detail, and further
regions in successively less detail.

This strategy results in a view size that is logarithmic in
the size of the list. Moving from one node to another ends
up to be a process much like a binary search, and gives a
diameter of the viewing graph that is also logarithmic.
Thus

EVT(FISHEYE-SAMPLED-LISTn) = (O(log n), O(log n)).

Note that variations of this fisheye sampling strategy can
yield good EVT performance for many other structures,
including 2D and 3D grids. ••

The lesson from examples 4 and 5 is that even if the logical
structure is not EVT, it is possible to make the viewing struc-
ture EVT by adding long-distance links.

•• example 6: fixing the list (version 3) - tree augmentation

In addition to just adding links, one can also adding nodes
to the viewing graph that are not in the original logical
structure. This allows various shortcut paths to share
structure, and reduce the total number of links needed,

Figure 4. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) part of viewing graph of fish-
eye sampled list, showing that out degree is
O(log(n)), (c) sample actually selected from list (d)
view actually given, of size O(log(n)), (e) illustration
of how diameter of viewing graph is now O(log(n)).

(a) (b) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple...

...endive...

ginger

herbs

indigo

jicama

kale...

...mango...

...quince

(d)(c)
and hence the general outdegree. For example, one can
glue a structure known to be EVT onto a given non-EVT
structure. In Figure 2 a tree is glued onto the side of the
list and traversal is predominantly through the tree. Thus
in Figure 2, new nodes are introduced (O(n)), and viewing
links are introduced in the form of a tree. Since the outde-
grees everywhere are of size ≤3, and logarithmic length
paths now exist between the original nodes by going
through the tree, we get

EVT(TREE-AUGMENTED-LISTn) = (O(1), O(log n)). ••

Although there is not enough space here for details, we note
in passing that an EVT analysis of zoomable interfaces is
valuable in clarifying one of their dramatic advantages -- the
diameter of the space is reduced from O(sqrt(n)) to O(log n).
[3][4]

Remarks about Efficient View Traversability

Efficient View Traversability is a minimal essential condition
for view navigation of very large information structures. In a
straight forward way it helps to explain why simple list view-
ers do not scale, why phone books and cone-trees exploit 3D,
why trees and fisheyes and zooms all help.

EVT analysis also suggests strategies for design. One can try
to coerce an information world into a representation which
naturally supports EVT1 and EVT2, e.g., the common prac-
tice of trying to represent things in trees. Alternatively one
can fix a poor structure by adding long-distance links, or add-
ing on another complete structure. Note that in general, the
impact of selectively adding links can be much greater on
decreasing diameter than on increasing view sizes, to net pos-
itive effect. One result of this simple insight is a general ver-
sion of the tree augmentation strategy. In general terms,
gluing any good EVT graph onto a bad one will make a new
structure as good as the good graph in diameter, and not much
worse than the worse of the two in outdegree. I.e., always
remember the strategy of putting a traversable infrastructure
on an otherwise unruly information structure!

Efficiently view traversable structures have an additional
interesting property, “jump and show”: an arbitrary non-nav-
igational jump (e.g., as the result of a query search) from one
location to another has a corresponding view traversal version
with a small rendering: a small number of steps each requir-

Figure 5. Improving EVT of a list by adding a tree.
The resulting structure has constant viewsize but
logarithmic diameter

(a) (c)(b)

Furnas Effective View Navigability November 26, 1996 5

ing a small view will suffice. Thus a short movie or small
map will show the user how they could have done a direct
walk from their old location to their new one. A similar con-
cept was explored for continuous Pan&Zoom in [4].

NAVIGABILITY

Efficient view traversability is not enough: it does little good
if a short traversal path to a destination exists but that path is
unfindable. It must be possible somehow to read the structure
to find good paths; the structure must be view navigable.

For analysis we imagine the simple case of some navigator
process searching for a particular target, proceeding by com-
paring it to information associated with each outlink in its
current view (outlink-info, e.g. a label). From this compari-
son, it decides which link to follow next.

In this paper we will explore an idealization, strong naviga-
bility , requiring that the structure and its outlink-info allow
the navigator (1) to find the shortest path to the target (2)
without error and (3) in a history-less fashion (meaning it can
make the right choice at each step by looking only at what is
visible in the current node). We examine this case because it
is tractable, because it leads to suggestive results, and
because, as a desirable fantasy, its limits are worth under-
standing.

To understand when strong view navigation is possible, a few
definitions are needed. They are illustrated in Figure 6 .

Consider a navigator at some node seeking the shortest path
to a target. A given link is a defensible next step only for cer-

Figure 6 The outlink-info for link A-->i is an enumeration,
and for A-->n is a feature (a shaded circle). These are
both well matched. The link info for links to the right of
A is not-well matched. The residue of f at A is the
shaded-circle label. The residue of e at A is its appear-
ance in the enumeration label. The node g has residue
in the upper right enumeration label at A, but it is not
good residue. The node h has no residue at A.

Link A-->n A-->u A-->i A-->d

to-set {c,f,k,p,r,s} {c,f,u,p,s} {e,i,m,t} {b,d,g,h,j,l,o,q,s}

outlink-info

inferred to-set <c,f,k,p,r,s> <g,x,y,z> <e,i,m,t> <?>

g x y z e i m t

f
p

c

t
h

r

u

i

o

g

j

k n

l b

e

s

m

A

d

q

e i m t

g x y z

tain targets -- the link must be on a shortest path to those tar-
gets. We call this set of targets the to-set of the link, basically
the targets the link efficiently “leads to”. If the navigator’s tar-
get is in the to-set of a link, it can follow that link.

We assume, however, that the navigator does not know the to-
set of a link directly; it is a global property of the structure of
the graph. The navigator only has access to the locally avail-
able outlink-info which it will match against its target to
decide what link to take. We define the inferred-to-set of a
link to be the set of all target nodes that the associated out-
link-info would seem to indicate is down that link (the targets
that would match the outlink-info), which could be a different
set entirely.

In fact, we say that the outlink-info of a link is not misleading
with respect to a target when the target being in the inferred-
to-set implies it is in the true to-set, or in other words when
the outlink-info does not mislead the navigator to take a step
it should not take. (Note that the converse is not being
required here; the outlink-info need not be complete, and may
underspecify its true-to-set.)

Next we say that the outlink-info of node as a whole is said to
be well-matched with respect to a target if none of its outlink-
info is misleading with respect to that target, and if the target
is in the inferred-to-set of at least one outlink. Further we say
that the outlink information at a node is simply well-matched
iff it is well-matched with respect to all possible targets.

We now state the following straightforward proposition:

Proposition (navigability): The navigator is guaran-
teed to always find shortest paths to targets iff the
outlink-info is everywhere well-matched.

Hence, the following requirement for a strongly navigable
world:

Requirement VN1(navigability): The outlink-info
must be everywhere well matched.

The critical observation in all this for designing navigable
information systems is that, to be navigable, the outlink-info
of a link must in some sense describe not just the next node,
but the whole to-set. This is a problem in many hypertext sys-
tems, including the WWW: Their link-labels indicate adja-
cent nodes and do not tell what else lies beyond, in the whole
to-set. In a sense, for navigation purposes, “highway signage”
might be a better metaphor for good outlink-info than “label”.
The information has to convey what is off in that direction,
off along that route, rather than just where it will get to next.
As we will see shortly, this is a difficult requirement in prac-
tice.

First, however, we turn the analysis on its head. The perspec-
tive so far has been in terms of how the world looks to a navi-
gator that successively follows outlinks using outlink-info
until it gets to its target: the navigator wants a world in which
it can find its target. Now let us think about the situation from
the other side -- how the world looks from the perspective of
a target, with the assumption that targets want a world in
which they can be found. This complementary perspective
brings up the important notion of residue or scent .The resi-

Furnas Effective View Navigability November 26, 1996 6

due or scent of a target is the remote indication of that target
in outlink-info throughout the information structure. More
precisely, a target has residue at a link if the associated out-
link-info would lead the navigator to take that link in pursuit
of the given target, i.e., to put the target in the inferred-to-set
of the link. If the navigator was not being mislead, i.e, the
outlink-info was well-matched for that target, then we say the
residue was good residue for the target.(Refer back to the
caption of Figure 6).

An alternate formulation of the Navigability proposition says
that in order to be findable by navigation from anywhere in
the structure, a target must have good residue at every node.
I.e., in order to be able to find a target, the navigator must
have some scent, some residue, of it, no matter where the
navigator is, to begin chasing down its trail.

Furthermore, if every target is to be findable, we need the fol-
lowing requirement, really an alternate statement of VN1:

Requirement VN1a (residue distribution): Every
node must have good residue at every other node.

This is a daunting challenge. There are numerous examples
of real world information structures without good residue dis-
tribution. Consider the WWW. You want to find some target
from your current location, but do not have a clue of how to
navigate there because your target has no good-residue here.
There is no trace of it in the current view. This is a fundamen-
tal reason why the WWW is not navigable. For another
example consider pan&zoom interfaces to information
worlds, like PAD[5]. If you zoom out too far, your target can
become unrecognizable, or disappear entirely leaving no resi-
due, and you cannot navigate back to it. This has lead to a
notion of semantic zooming [1] [5] , where the appearance of
an object changes as its size changes so that it stays visually
comprehensible, or at least visible -- essentially a design
move to preserve good residue.

The VN1 requirements are difficult basically because of the
following scaling constraint.

Requirement VN2. Outlink-info must be “small”.

To understand this requirement and its impact, consider that
one way to get perfect matching or equivalently perfect glo-
bal residue distributions would be to have an exhaustive list,
or enumeration, of the to-set as the outlink-info for each link
(i.e., each link is labeled by listing the complete set of things
it “leads to”, as in the label of the lower left outlink from node
A in). Thus collectively between all the outlinks at each node
there is a full listing of the structure, and such a complete
union list must exist at each node. This “enumeration” strat-
egy is presumably not feasible for view navigation since,
being O(n2), it does not scale well. Thus, the outlink-info
must somehow accurately specify the corresponding to-set in
some way more efficient than enumeration, using more con-
ceptually complex representations, requiring semantic
notions like attributes (Red) and abstraction (LivingThings).

The issues underlying good residue, its representation and
distribution, are intriguing and complex. Only a few modest
observations will be listed here.

Remarks on View Navigability

Trees revisited. One of the most familiar navigable informa-
tion structures is a rooted tree in the form of classification
hierarchies like biological taxonomies or simple library clas-
sification schemes like the dewey decimal system. In the tra-
versability section of this paper, balanced trees in their
completely unlabeled form were hailed as having good tra-
versal properties just as graphs. Here there is an entirely dif-
ferent point: a systematic labeling of a rooted tree as a
hierarchy can make it in addition a reasonably navigable
structure. Starting at the root of a biological taxonomy, one
can take Cat as a target and decide in turn, is it an Animal or a
Plant, is it a Vertebrate or Invertebrate, etc. and with enough
knowledge enough about cats, have a reasonable (though not
certain!) chance of navigating the way down to the Cat leaf
node in the structure. This is so familiar it seems trivial, but it
is not.

First let us understand why the hierarchy works in terms of
the vocabulary of this paper. There is well matched out-link
info at each node along the way: the Vertebrate label leads to
the to-set of vertebrates, etc. and the navigator is not misled.
Alternately, note that the Cat leaf-node has good residue
everywhere. This is most explicit in the Animal, Vertebrate,
Mammal,... nodes along the way from the root, but there is
also implicit good residue throughout the structure. At the
Maple node, in addition to the SugarMaple and NorwayMa-
ple children, neither of which match Cat, there is the upward
outlink returning towards the root, implicitly labeled “The
Rest”, which Cat does match, and which is good residue. This
superficial explanation has beneath it a number of critical
subtleties, general properties of the semantic labeling scheme
that rely on the richness of the notion of cat, the use of large
semantic categories, and the subtle web woven from of these
categories. These subtleties, all implied by the theory of view
navigation and efficient traversability not only help explain
why hierarchies work when they do, but also give hints how
other structures, like hypertext graphs of the world wide web,
might be made navigable.

To understand the navigation challenge a bit, consider the
how bad things could be.

The spectre of essential non-navigability. Cons ider tha t
Requirement VN2 implies that typically the minimum
description length of the to-sets must be small compared to
the size of those sets. In information theory that is equivalent
to requiring that the to-sets are not random. Thus,

•• example 7: non-navigable 1 - completely unrelated items.

A set of n completely unrelated things is intrinsically not
navigable. To see this consider an abstract alphabet of size
n. Any subset (e.g., a to-set) is information full, with no
structure or redundancy, and an individual set cannot be
specified except by enumeration. As a result it is not hard
to show there is no structure for organizing these n things,
whose outlinks can be labeled except with predominant

Furnas Effective View Navigability November 26, 1996 7

use of enumeration5, and so overall VN2 would be vio-
lated. ••

Such examples help in understanding navigability in the
abstract, and raise the point that insofar as the real world is
like such sets (is the web too random?), designing navigable
systems is going to be hard. Having set two extremes, the rea-
sonably navigable and the unnavigable, consider next a num-
ber of general deductions about view navigation.

Navigability requires representation of many sets. Every
link has an associated toset that must be labeled. This means
that the semantics of the domain must be quite rich to allow
all these sets to have appropriate characterizations (like,
RedThings, Cars, ThingsThatSleep). Similarly since a target
must have residue at every node, each target must belong to n
of these sets -- in stark contrast to the impoverished semantics
of the purely random non-navigable example.

Navigability requires an interlocking web of set
representations. Furthermore, these to-sets are richly inter-
dependent. Consider the local part of some structure shown in
Figure 7. Basically, the navigator should go to y to get to the

targets available from y. In other words the to-set, A, out of x ,
is largely made up of the to-sets B and C out of neighboring y.
(The exceptions, which are few in many structures, are those
targets with essentially an equally good path from x and y.)
This indicates that a highly constrained interlocking web of
tosets and corresponding semantics and labels must be
woven. In a hierarchy the to-sets moving from the root form
successive partitions and view navigability is obtained by
labeling those links with category labels that semantically
carve up the sets correspondingly. Animals leads, not to
“BrownThings” and “LargeThings” but to Vertebrates and
Invertebrates -- a conceptual partition the navigator can
decode mirroring an actual partition in the toset. Other struc-
tures do not often admit such nice partitioning semantics. It is
unclear what other structures have to-sets and webs of seman-
tic labelings that can be made to mirror each other.

Residue as a shared resource. Since ubiquitous enumera-
tion is not feasible, each target does not get its own explicit
listing in outlink-info everywhere. It follows that in some
sense, targets must typically share residue. The few bits of
outlink-info are a scarce resource whose global distribution
must be carefully structured, and not left to grow willy-nilly.
To see this consider putting a new page up on the web. In the-
ory, for strong navigability, every other node in the net must
suddenly have good residue for this new page! Note how
cleverly this can be handled in a carefully crafted hierarchy.

5 Technically, use of enumeration must dominate but need not
be ubiquitous. Some equivalent of the short label “the rest” can
be used for some links, but this can be shown not to rescue the
situation.

x
A

C

B
y

Figure 7. Two adjacent nodes, x and y, in a structure.
The to-sets associated with each outlink are
labeled in upper case.

All the many vertebrates share the short Vertebrate label as
residue. Global distribution is maintained by the careful
placement of new items: put a new vertebrate in the right
branch of the tree, and it shares the existing good residue. It is
probably no accident that the emerging large navigable sub-
structures over the web, e.g. Yahoo!, arise in a carefully
crafted hierarchical overlay with careful administrative super-
vision attending to the global distribution of this scare residue
resource.

Similarity-based navigation. One interesting class of naviga-
ble structures makes use of similarity both to organize the
structure and run the navigator. Objects are at nodes, and
there is some notion of similarity between objects. The out-
link-info of a link simply indicates the object at other end of
link. The navigator can compute the similarity between
objects, and chooses the outlink whose associated object is
most similar to its ultimate target, in this way hill-climbing up
a similarity gradient until the target is reached. One might
navigate through color space in this way, moving always
towards the neighboring color that is most similar to the tar-
get. Or one might try to navigate through the WWW by
choosing an adjacent page that seems most like what one is
pursuing (this would be likely to fail in general).

Similarity based navigation requires that nodes for similar
objects be pretty closely linked in the structure, but that is not
sufficient. There can be sets of things which have differential
similarity (not completely unrelated as in the non-navigable
example 6), and which can be linked to reflect that similarity
perfectly, but which are still fundamentally non-navigable,
essentially because all similarity is purely local, and so there
is no good-residue of things far away.

•• example 8: non-navigable set 2 - locally related structure.

This example concerns sets with arbitrary similarity struc-
ture but only local semantics, and that are hence non-nav-
igable.Take any graph of interest, for example the line
graph below. Take an alphabet as large as the number of
links in the graph, and randomly assign the letters to the
links. Now make “objects” at the nodes that are collec-
tions of the letters on the adjacent links:

Despite the fact that “similar” objects are adjacent in this
organization, there is no way to know how to get from,
say, LG to anything other than its immediate neighbors:
There is no good-residue of things far away ••

This example might be a fair approximation to the WWW --
pages might indeed be similar, or at least closely related, to
their neighbors, yet it is in general a matter of relatively
small, purely local features, and cannot support navigation.

Weaker models of navigability. Suppose we were to relax
strong navigability, for example abandoning the need for
every target to have residue at the current node. Even then
resource constraints dictate that it be possible to explore in a
small amount of time and find appropriate good residue.This
suggests that this relaxation will not dramatically alter the
general conclusions. Imagine that you could sit at a node and
send out a pack of seeing-eye bloodhounds looking for scent
at each step. This really amounts to just changing the viewing

J P B X L G V M T N S

J JP PB BX XL LG GV VM MT TN NS S

Furnas Effective View Navigability November 26, 1996 8

graph, including the sphere that the bloodhounds can see
(smell?) into the “viewed” neighbors. The constraints on how
many hounds and how long they can explore basically
remains a constraint on outdegree in the revised graph.

Combining EVT + VN = Effective View Navigability (EVN)

If we want an information structure that is both efficiently tra-
versable, and is strongly view navigable, then both the
mechanical constraints of EVT on diameter and outdegree
and the residue constraints of VN must hold. In this section
we make some informal observations about how the two sets
of constraints interact.

Large scale semantics dominate. Since by assumption
everything can be reached from a given node, the union of the
to-sets at each node form the whole set of n items in the struc-
ture. If there are v links leaving the node, the average size of
the to-set is n/v. If the structure satisfies EVT2, then v is small
compared to n, so the average to-set is quite large.

The significance of this is that VN1 requires that outlink-info
faithfully represent these large to-sets. If we assume the rep-
resentations are related to the semantics of objects, and that
representations of large sets are in some sense high level
semantics, it follows that high level semantics play a domi-
nant role in navigable structures. In a hierarchy this is seen in
both the broad category labels like Animal and Plant, and in
the curious “the rest” labels. The latter can be used in any
structure, but are quite constrained (e.g., they can only be
used for one outlink per node), so there is considerable stress
on more meaningful coarse-grain semantics. So if for exam-
ple the natural semantics of a domain mostly allow the speci-
fication of small sets, one might imagine intrinsic trouble for
navigation. (Note that Example 8 has this problem.)

Carving up the world efficiently. Earlier it was noted that the
to-sets of a structure form a kind of overlapping mosaic
which, by VN1 must be mirrored in the outlink-info. Enforc-
ing the diameter requirement of EVT2 means the neighboring
to-sets have to differ more dramatically. Consider by contrast
the to-sets of the line graph, a graph with bad diameter. There
the to-sets change very slowly as one moves along, with only
one item being eliminated at a time. It is possible to show (see
[3]) that under EVT2 the overlap pattern of to-sets must be
able to whittle down the space of alternatives in a small num-
ber of intersections. The efficiency of binary partitioning is
what makes a balanced binary tree satisfy EVT2, but a very
unbalanced one not. Correspondingly an efficiently view nav-
igable hierarchy has semantics that partition into equal size
sets, yielding navigation by fast binary search. More gener-
ally, whatever structure, the semantics of the domain must
carve it up efficiently.

Summary and Discussion

The goal of the work presented here has been to gain under-
standing of view navigation, with the basic premise that scale
issues are critical. The simple mechanics of traversal require
design of the logical structure and its viewing strategy so as to
make efficient uses of time and space, by coercing things into
known EVT structures, adding long distance links, or gluing
on navigational backbones. Navigation proper requires that
all possible targets have good residue throughout the struc-

ture. Equivalently, labeling must reflect a link’s to-set, not just
the neighboring node. This requires the rich semantic repre-
sentation of a web of interlocking sets, many of them large,
that efficiently carve up the contents of the space.

Together these considerations help to understand reasons why
some information navigation schemes are,

bad: the web in general (bad residue, diameter), simple
scrolling lists (bad diameter)

mixed: geometric zoom (good diameter, poor residue),

good: semantic zoom (better residue), 3D(shorter paths),
fisheyes (even shorter paths), balanced rooted trees (short
paths and possible simple semantics)

The problem of global residue distribution is very difficult.
The taxonomies implemented in rooted trees are about the
best we have so far, but even they are hard to design and use
for all purposes. New structures should be explored (e.g.,
hypercubes, DAG’s, multitrees), but one might also consider
hybrid strategies to overcome the limits of pure navigation,
including synergies between query and navigation. For exam-
ple, global navigability may not be achievable, but local navi-
gability may be - e.g., structures where residue is distributed
reasonably only within a limited radius of a target. Then if
there is some other way to get to the right neighborhood (e.g.,
as the result of an query), it may be possible to navigate the
rest of the way. The result is query initiated browsing, an
emerging paradigm on the web. Alternatively, one might ease
the residue problem by allowing dynamic outlink-info, for
example relabeling outlinks by the result of an ad-hoc query
of the structure.

Acknowledgments. This work was supported in part by
ARPA grant N66001-94-C-6039.

REFERENCES
1. Bederson, B. B. and Hollan, J. D., PAD++: zooming graphi-

cal interface for exploring alternate interface physics. In
Proceedings of ACM UIST’94, (Marina Del Ray, CA, 1994),
ACM Press, pp 17-26.

2. Card, S. K., Pirolli, P., and Mackinlay, J. D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Pro-
ceedings of CHI’94 Human Factors in Computing Systems
(Boston, MA, April 1994), ACM press, pp. 238-244.

3. Furnas, G.W., Effectively View-Navigable Structures. Paper
presented at the 1995 Human Computer Interaction Consor-
tium Workshop (HCIC95), Snow Mountain Ranch, Colo-
rado Feb 17, 1995. Manuscript available at http://
http2.si.umich.edu/~furnas/POSTSCRIPTS/
EVN.HCIC95.workshop.paper.ps

4. Furnas, G. W., and Bederson, B., Space-Scale Diagrams:
Understanding Multiscale Interfaces. In Human Factors in
Computing Systems, CHI’95 Conference Proceedings
(ACM), Denver, Colorado, May 8-11, 1995, 234-201.

5. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface. In Proceedings of ACM SigGraph `93
(Anaheim, CA), 1993, pp. 57-64.

6. Robertson, G. G., Mackinlay, J.D., and Card, S.K., Cone
trees: animated 3D visualizations of hierarchical informa-
tion. CHI’91 Proceedings, 1991, 189-194.

ABSTRACT

In view navigation a user moves about an information struc-
ture by selecting something in the current view of the struc-
ture. This paper explores the implications of rudimentary
requirements for effective view navigation, namely that,
despite the vastness of an information structure, the views
must be small, moving around must not take too many steps
and the route to any target be must be discoverable. The
analyses help rationalize existing practice, give insight into
the difficulties, and suggest strategies for design.

KEYWORDS: Information navigation, Direct Walk, large
information structures, hypertext, searching, browsing

INTRODUCTION

When the World Wide Web (WWW) first gained popularity,
those who used it were impressed by the richness of the con-
tent accessible simply by wandering around and clicking
things seen on the screen. Soon after, struck by the near
impossibility of finding anything specific, global navigation
was largely abandoned in place of search engines. What went
wrong with pure navigation?

This work presented here seeks theoretical insight into, in
part, the problems with pure navigational access on the web.
More generally, it explores some basic issues in moving
around and finding things in various information structures,
be they webs, trees, tables, or even simple lists. The focus is
particularly on issues that arise as such structures get very
large, where interaction is seriously limited by the available
resources of space (e.g., screen real estate) and time (e.g.,
number of interactions required to get somewhere): How do
these limits in turn puts constraints on what kinds of informa-
tion structures and display strategies lead to effective naviga-
tion? How have these constraints affected practice, and how
might we live with them in future design?

We will be considering systems with static structure over
which users must navigate to find things, e.g., lists, trees,

planes, grids, graphs. The structure is assumed to contain ele-
ments of some sort (items in a list, nodes in a hypertext
graph) organized in some logical structure. We assume that
the interface given to the user is navigational, i.e., the user at
any given time is “at” some node in the structure with a view
specific to that node (e.g., of the local neighborhood), and has
the ability to move next to anything in that current view. For
example for a list the user might have window centered on a
particular current item. A click on an item at the bottom of
the window would cause that item to scroll up and become
the new “current” item in the middle of the window. In a
hypertext web, a user could follow one of the visible links in
the current hypertext page.

In this paper we will first examine view traversal, the under-
lying iterative process of viewing, selecting something seen,
and moving to it, to form a path through the structure.1 Then
we will look at the more complex view navigation where in
addition the selections try to be informed and reasonable in
the pursuit of a desired target. Thus view traversal ignores
how to decide where to go next, for view navigation that is
central.The goal throughout is to understand the implications
of resource problems arising as structures get very large.

EFFICIENT VIEW TRAVERSIBILITY

What are the basic requirements for efficient view traversal?
I.e., what are the minimal capabilities for moving around by
viewing, selecting and moving which, if not met, will make
large information structures, those encompassing thousands,
even billions of items, impractical for navigation.

Definitions and Fundamental Requirements

We assume that the elements of the information structure (the
items in a list, nodes in a hypertext graph, etc.) are organized
in a logical structure that can be characterized by a logical
structure graph, connecting elements to their logical neigh-
bors as dictated by the semantics of the domain.2 For an
ordered list this would just be line graph, with each item con-
nected to the items which proceed and follow it. For a hyper-

1 This is the style of interaction was called a direct walk by
Card, et al [2]. We choose the terminology “view traversal”
here to make explicit the view aspect, since we wish to study
the use of spatial resources needed for viewing.
2 More complete definitions, and proofs of most of the mate-
rial in this paper can be found in [3]

Effective View Navigation

George W. Furnas
School of Information
University of Michigan

(313) 763-0076
furnas@umich.edu

To appear in Human Factors in Computing Systems, CHI’97 Conference Proceedings (ACM), Atlanta GA, March 22-27, 1997.

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list

Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT(SCROLLING-LISTn) = (O(1), O(n)), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

Furnas Effective View Navigability November 26, 1996 3

Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.

Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT(BALANCED-REGULAR-TREEn) = (O(1), O(log n)) ••

•• example 3: local viewing of a hypercube

Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT(HYPERCUBEn) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures
What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions

One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT(MULTI-COLUMN-LISTn) = (O(1), O(sqrt(n)).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4 Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 4

illustrated in Figure 3 (e), where the part of the viewing
graph in (c) is shown in the unfolded version of the list.••

The critical thing to note in the example is that some of the
links of the viewing graph point to nodes that are not local in
the logical structure of the graph. This is a very general class
of strategies for decreasing the diameter of the viewing graph,
further illustrated in the next example.

•• example 5: fixing the list (version 2) - fisheye sampling

It is possible to use non-local viewing links to improve
even further the view-traversability of a list. Figure 3
shows a viewing strategy where the nodes included in a
view are spaced in a geometric series. That is, from the
current node, one can see the nodes that are at a distance
1, 2, 4, 8, 16,... away in the list. This sampling pattern
might be called a kind of fisheye sampling, in that it
shows the local part of the list in most detail, and further
regions in successively less detail.

This strategy results in a view size that is logarithmic in
the size of the list. Moving from one node to another ends
up to be a process much like a binary search, and gives a
diameter of the viewing graph that is also logarithmic.
Thus

EVT(FISHEYE-SAMPLED-LISTn) = (O(log n), O(log n)).

Note that variations of this fisheye sampling strategy can
yield good EVT performance for many other structures,
including 2D and 3D grids. ••

The lesson from examples 4 and 5 is that even if the logical
structure is not EVT, it is possible to make the viewing struc-
ture EVT by adding long-distance links.

•• example 6: fixing the list (version 3) - tree augmentation

In addition to just adding links, one can also adding nodes
to the viewing graph that are not in the original logical
structure. This allows various shortcut paths to share
structure, and reduce the total number of links needed,

Figure 4. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) part of viewing graph of fish-
eye sampled list, showing that out degree is
O(log(n)), (c) sample actually selected from list (d)
view actually given, of size O(log(n)), (e) illustration
of how diameter of viewing graph is now O(log(n)).

(a) (b) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple...

...endive...

ginger

herbs

indigo

jicama

kale...

...mango...

...quince

(d)(c)
and hence the general outdegree. For example, one can
glue a structure known to be EVT onto a given non-EVT
structure. In Figure 2 a tree is glued onto the side of the
list and traversal is predominantly through the tree. Thus
in Figure 2, new nodes are introduced (O(n)), and viewing
links are introduced in the form of a tree. Since the outde-
grees everywhere are of size ≤3, and logarithmic length
paths now exist between the original nodes by going
through the tree, we get

EVT(TREE-AUGMENTED-LISTn) = (O(1), O(log n)). ••

Although there is not enough space here for details, we note
in passing that an EVT analysis of zoomable interfaces is
valuable in clarifying one of their dramatic advantages -- the
diameter of the space is reduced from O(sqrt(n)) to O(log n).
[3][4]

Remarks about Efficient View Traversability

Efficient View Traversability is a minimal essential condition
for view navigation of very large information structures. In a
straight forward way it helps to explain why simple list view-
ers do not scale, why phone books and cone-trees exploit 3D,
why trees and fisheyes and zooms all help.

EVT analysis also suggests strategies for design. One can try
to coerce an information world into a representation which
naturally supports EVT1 and EVT2, e.g., the common prac-
tice of trying to represent things in trees. Alternatively one
can fix a poor structure by adding long-distance links, or add-
ing on another complete structure. Note that in general, the
impact of selectively adding links can be much greater on
decreasing diameter than on increasing view sizes, to net pos-
itive effect. One result of this simple insight is a general ver-
sion of the tree augmentation strategy. In general terms,
gluing any good EVT graph onto a bad one will make a new
structure as good as the good graph in diameter, and not much
worse than the worse of the two in outdegree. I.e., always
remember the strategy of putting a traversable infrastructure
on an otherwise unruly information structure!

Efficiently view traversable structures have an additional
interesting property, “jump and show”: an arbitrary non-nav-
igational jump (e.g., as the result of a query search) from one
location to another has a corresponding view traversal version
with a small rendering: a small number of steps each requir-

Figure 5. Improving EVT of a list by adding a tree.
The resulting structure has constant viewsize but
logarithmic diameter

(a) (c)(b)

Furnas Effective View Navigability November 26, 1996 5

ing a small view will suffice. Thus a short movie or small
map will show the user how they could have done a direct
walk from their old location to their new one. A similar con-
cept was explored for continuous Pan&Zoom in [4].

NAVIGABILITY

Efficient view traversability is not enough: it does little good
if a short traversal path to a destination exists but that path is
unfindable. It must be possible somehow to read the structure
to find good paths; the structure must be view navigable.

For analysis we imagine the simple case of some navigator
process searching for a particular target, proceeding by com-
paring it to information associated with each outlink in its
current view (outlink-info, e.g. a label). From this compari-
son, it decides which link to follow next.

In this paper we will explore an idealization, strong naviga-
bility , requiring that the structure and its outlink-info allow
the navigator (1) to find the shortest path to the target (2)
without error and (3) in a history-less fashion (meaning it can
make the right choice at each step by looking only at what is
visible in the current node). We examine this case because it
is tractable, because it leads to suggestive results, and
because, as a desirable fantasy, its limits are worth under-
standing.

To understand when strong view navigation is possible, a few
definitions are needed. They are illustrated in Figure 6 .

Consider a navigator at some node seeking the shortest path
to a target. A given link is a defensible next step only for cer-

Figure 6 The outlink-info for link A-->i is an enumeration,
and for A-->n is a feature (a shaded circle). These are
both well matched. The link info for links to the right of
A is not-well matched. The residue of f at A is the
shaded-circle label. The residue of e at A is its appear-
ance in the enumeration label. The node g has residue
in the upper right enumeration label at A, but it is not
good residue. The node h has no residue at A.

Link A-->n A-->u A-->i A-->d

to-set {c,f,k,p,r,s} {c,f,u,p,s} {e,i,m,t} {b,d,g,h,j,l,o,q,s}

outlink-info

inferred to-set <c,f,k,p,r,s> <g,x,y,z> <e,i,m,t> <?>

g x y z e i m t

f
p

c

t
h

r

u

i

o

g

j

k n

l b

e

s

m

A

d

q

e i m t

g x y z

tain targets -- the link must be on a shortest path to those tar-
gets. We call this set of targets the to-set of the link, basically
the targets the link efficiently “leads to”. If the navigator’s tar-
get is in the to-set of a link, it can follow that link.

We assume, however, that the navigator does not know the to-
set of a link directly; it is a global property of the structure of
the graph. The navigator only has access to the locally avail-
able outlink-info which it will match against its target to
decide what link to take. We define the inferred-to-set of a
link to be the set of all target nodes that the associated out-
link-info would seem to indicate is down that link (the targets
that would match the outlink-info), which could be a different
set entirely.

In fact, we say that the outlink-info of a link is not misleading
with respect to a target when the target being in the inferred-
to-set implies it is in the true to-set, or in other words when
the outlink-info does not mislead the navigator to take a step
it should not take. (Note that the converse is not being
required here; the outlink-info need not be complete, and may
underspecify its true-to-set.)

Next we say that the outlink-info of node as a whole is said to
be well-matched with respect to a target if none of its outlink-
info is misleading with respect to that target, and if the target
is in the inferred-to-set of at least one outlink. Further we say
that the outlink information at a node is simply well-matched
iff it is well-matched with respect to all possible targets.

We now state the following straightforward proposition:

Proposition (navigability): The navigator is guaran-
teed to always find shortest paths to targets iff the
outlink-info is everywhere well-matched.

Hence, the following requirement for a strongly navigable
world:

Requirement VN1(navigability): The outlink-info
must be everywhere well matched.

The critical observation in all this for designing navigable
information systems is that, to be navigable, the outlink-info
of a link must in some sense describe not just the next node,
but the whole to-set. This is a problem in many hypertext sys-
tems, including the WWW: Their link-labels indicate adja-
cent nodes and do not tell what else lies beyond, in the whole
to-set. In a sense, for navigation purposes, “highway signage”
might be a better metaphor for good outlink-info than “label”.
The information has to convey what is off in that direction,
off along that route, rather than just where it will get to next.
As we will see shortly, this is a difficult requirement in prac-
tice.

First, however, we turn the analysis on its head. The perspec-
tive so far has been in terms of how the world looks to a navi-
gator that successively follows outlinks using outlink-info
until it gets to its target: the navigator wants a world in which
it can find its target. Now let us think about the situation from
the other side -- how the world looks from the perspective of
a target, with the assumption that targets want a world in
which they can be found. This complementary perspective
brings up the important notion of residue or scent .The resi-

Furnas Effective View Navigability November 26, 1996 6

due or scent of a target is the remote indication of that target
in outlink-info throughout the information structure. More
precisely, a target has residue at a link if the associated out-
link-info would lead the navigator to take that link in pursuit
of the given target, i.e., to put the target in the inferred-to-set
of the link. If the navigator was not being mislead, i.e, the
outlink-info was well-matched for that target, then we say the
residue was good residue for the target.(Refer back to the
caption of Figure 6).

An alternate formulation of the Navigability proposition says
that in order to be findable by navigation from anywhere in
the structure, a target must have good residue at every node.
I.e., in order to be able to find a target, the navigator must
have some scent, some residue, of it, no matter where the
navigator is, to begin chasing down its trail.

Furthermore, if every target is to be findable, we need the fol-
lowing requirement, really an alternate statement of VN1:

Requirement VN1a (residue distribution): Every
node must have good residue at every other node.

This is a daunting challenge. There are numerous examples
of real world information structures without good residue dis-
tribution. Consider the WWW. You want to find some target
from your current location, but do not have a clue of how to
navigate there because your target has no good-residue here.
There is no trace of it in the current view. This is a fundamen-
tal reason why the WWW is not navigable. For another
example consider pan&zoom interfaces to information
worlds, like PAD[5]. If you zoom out too far, your target can
become unrecognizable, or disappear entirely leaving no resi-
due, and you cannot navigate back to it. This has lead to a
notion of semantic zooming [1] [5] , where the appearance of
an object changes as its size changes so that it stays visually
comprehensible, or at least visible -- essentially a design
move to preserve good residue.

The VN1 requirements are difficult basically because of the
following scaling constraint.

Requirement VN2. Outlink-info must be “small”.

To understand this requirement and its impact, consider that
one way to get perfect matching or equivalently perfect glo-
bal residue distributions would be to have an exhaustive list,
or enumeration, of the to-set as the outlink-info for each link
(i.e., each link is labeled by listing the complete set of things
it “leads to”, as in the label of the lower left outlink from node
A in). Thus collectively between all the outlinks at each node
there is a full listing of the structure, and such a complete
union list must exist at each node. This “enumeration” strat-
egy is presumably not feasible for view navigation since,
being O(n2), it does not scale well. Thus, the outlink-info
must somehow accurately specify the corresponding to-set in
some way more efficient than enumeration, using more con-
ceptually complex representations, requiring semantic
notions like attributes (Red) and abstraction (LivingThings).

The issues underlying good residue, its representation and
distribution, are intriguing and complex. Only a few modest
observations will be listed here.

Remarks on View Navigability

Trees revisited. One of the most familiar navigable informa-
tion structures is a rooted tree in the form of classification
hierarchies like biological taxonomies or simple library clas-
sification schemes like the dewey decimal system. In the tra-
versability section of this paper, balanced trees in their
completely unlabeled form were hailed as having good tra-
versal properties just as graphs. Here there is an entirely dif-
ferent point: a systematic labeling of a rooted tree as a
hierarchy can make it in addition a reasonably navigable
structure. Starting at the root of a biological taxonomy, one
can take Cat as a target and decide in turn, is it an Animal or a
Plant, is it a Vertebrate or Invertebrate, etc. and with enough
knowledge enough about cats, have a reasonable (though not
certain!) chance of navigating the way down to the Cat leaf
node in the structure. This is so familiar it seems trivial, but it
is not.

First let us understand why the hierarchy works in terms of
the vocabulary of this paper. There is well matched out-link
info at each node along the way: the Vertebrate label leads to
the to-set of vertebrates, etc. and the navigator is not misled.
Alternately, note that the Cat leaf-node has good residue
everywhere. This is most explicit in the Animal, Vertebrate,
Mammal,... nodes along the way from the root, but there is
also implicit good residue throughout the structure. At the
Maple node, in addition to the SugarMaple and NorwayMa-
ple children, neither of which match Cat, there is the upward
outlink returning towards the root, implicitly labeled “The
Rest”, which Cat does match, and which is good residue. This
superficial explanation has beneath it a number of critical
subtleties, general properties of the semantic labeling scheme
that rely on the richness of the notion of cat, the use of large
semantic categories, and the subtle web woven from of these
categories. These subtleties, all implied by the theory of view
navigation and efficient traversability not only help explain
why hierarchies work when they do, but also give hints how
other structures, like hypertext graphs of the world wide web,
might be made navigable.

To understand the navigation challenge a bit, consider the
how bad things could be.

The spectre of essential non-navigability. Cons ider tha t
Requirement VN2 implies that typically the minimum
description length of the to-sets must be small compared to
the size of those sets. In information theory that is equivalent
to requiring that the to-sets are not random. Thus,

•• example 7: non-navigable 1 - completely unrelated items.

A set of n completely unrelated things is intrinsically not
navigable. To see this consider an abstract alphabet of size
n. Any subset (e.g., a to-set) is information full, with no
structure or redundancy, and an individual set cannot be
specified except by enumeration. As a result it is not hard
to show there is no structure for organizing these n things,
whose outlinks can be labeled except with predominant

Furnas Effective View Navigability November 26, 1996 7

use of enumeration5, and so overall VN2 would be vio-
lated. ••

Such examples help in understanding navigability in the
abstract, and raise the point that insofar as the real world is
like such sets (is the web too random?), designing navigable
systems is going to be hard. Having set two extremes, the rea-
sonably navigable and the unnavigable, consider next a num-
ber of general deductions about view navigation.

Navigability requires representation of many sets. Every
link has an associated toset that must be labeled. This means
that the semantics of the domain must be quite rich to allow
all these sets to have appropriate characterizations (like,
RedThings, Cars, ThingsThatSleep). Similarly since a target
must have residue at every node, each target must belong to n
of these sets -- in stark contrast to the impoverished semantics
of the purely random non-navigable example.

Navigability requires an interlocking web of set
representations. Furthermore, these to-sets are richly inter-
dependent. Consider the local part of some structure shown in
Figure 7. Basically, the navigator should go to y to get to the

targets available from y. In other words the to-set, A, out of x ,
is largely made up of the to-sets B and C out of neighboring y.
(The exceptions, which are few in many structures, are those
targets with essentially an equally good path from x and y.)
This indicates that a highly constrained interlocking web of
tosets and corresponding semantics and labels must be
woven. In a hierarchy the to-sets moving from the root form
successive partitions and view navigability is obtained by
labeling those links with category labels that semantically
carve up the sets correspondingly. Animals leads, not to
“BrownThings” and “LargeThings” but to Vertebrates and
Invertebrates -- a conceptual partition the navigator can
decode mirroring an actual partition in the toset. Other struc-
tures do not often admit such nice partitioning semantics. It is
unclear what other structures have to-sets and webs of seman-
tic labelings that can be made to mirror each other.

Residue as a shared resource. Since ubiquitous enumera-
tion is not feasible, each target does not get its own explicit
listing in outlink-info everywhere. It follows that in some
sense, targets must typically share residue. The few bits of
outlink-info are a scarce resource whose global distribution
must be carefully structured, and not left to grow willy-nilly.
To see this consider putting a new page up on the web. In the-
ory, for strong navigability, every other node in the net must
suddenly have good residue for this new page! Note how
cleverly this can be handled in a carefully crafted hierarchy.

5 Technically, use of enumeration must dominate but need not
be ubiquitous. Some equivalent of the short label “the rest” can
be used for some links, but this can be shown not to rescue the
situation.

x
A

C

B
y

Figure 7. Two adjacent nodes, x and y, in a structure.
The to-sets associated with each outlink are
labeled in upper case.

All the many vertebrates share the short Vertebrate label as
residue. Global distribution is maintained by the careful
placement of new items: put a new vertebrate in the right
branch of the tree, and it shares the existing good residue. It is
probably no accident that the emerging large navigable sub-
structures over the web, e.g. Yahoo!, arise in a carefully
crafted hierarchical overlay with careful administrative super-
vision attending to the global distribution of this scare residue
resource.

Similarity-based navigation. One interesting class of naviga-
ble structures makes use of similarity both to organize the
structure and run the navigator. Objects are at nodes, and
there is some notion of similarity between objects. The out-
link-info of a link simply indicates the object at other end of
link. The navigator can compute the similarity between
objects, and chooses the outlink whose associated object is
most similar to its ultimate target, in this way hill-climbing up
a similarity gradient until the target is reached. One might
navigate through color space in this way, moving always
towards the neighboring color that is most similar to the tar-
get. Or one might try to navigate through the WWW by
choosing an adjacent page that seems most like what one is
pursuing (this would be likely to fail in general).

Similarity based navigation requires that nodes for similar
objects be pretty closely linked in the structure, but that is not
sufficient. There can be sets of things which have differential
similarity (not completely unrelated as in the non-navigable
example 6), and which can be linked to reflect that similarity
perfectly, but which are still fundamentally non-navigable,
essentially because all similarity is purely local, and so there
is no good-residue of things far away.

•• example 8: non-navigable set 2 - locally related structure.

This example concerns sets with arbitrary similarity struc-
ture but only local semantics, and that are hence non-nav-
igable.Take any graph of interest, for example the line
graph below. Take an alphabet as large as the number of
links in the graph, and randomly assign the letters to the
links. Now make “objects” at the nodes that are collec-
tions of the letters on the adjacent links:

Despite the fact that “similar” objects are adjacent in this
organization, there is no way to know how to get from,
say, LG to anything other than its immediate neighbors:
There is no good-residue of things far away ••

This example might be a fair approximation to the WWW --
pages might indeed be similar, or at least closely related, to
their neighbors, yet it is in general a matter of relatively
small, purely local features, and cannot support navigation.

Weaker models of navigability. Suppose we were to relax
strong navigability, for example abandoning the need for
every target to have residue at the current node. Even then
resource constraints dictate that it be possible to explore in a
small amount of time and find appropriate good residue.This
suggests that this relaxation will not dramatically alter the
general conclusions. Imagine that you could sit at a node and
send out a pack of seeing-eye bloodhounds looking for scent
at each step. This really amounts to just changing the viewing

J P B X L G V M T N S

J JP PB BX XL LG GV VM MT TN NS S

Furnas Effective View Navigability November 26, 1996 8

graph, including the sphere that the bloodhounds can see
(smell?) into the “viewed” neighbors. The constraints on how
many hounds and how long they can explore basically
remains a constraint on outdegree in the revised graph.

Combining EVT + VN = Effective View Navigability (EVN)

If we want an information structure that is both efficiently tra-
versable, and is strongly view navigable, then both the
mechanical constraints of EVT on diameter and outdegree
and the residue constraints of VN must hold. In this section
we make some informal observations about how the two sets
of constraints interact.

Large scale semantics dominate. Since by assumption
everything can be reached from a given node, the union of the
to-sets at each node form the whole set of n items in the struc-
ture. If there are v links leaving the node, the average size of
the to-set is n/v. If the structure satisfies EVT2, then v is small
compared to n, so the average to-set is quite large.

The significance of this is that VN1 requires that outlink-info
faithfully represent these large to-sets. If we assume the rep-
resentations are related to the semantics of objects, and that
representations of large sets are in some sense high level
semantics, it follows that high level semantics play a domi-
nant role in navigable structures. In a hierarchy this is seen in
both the broad category labels like Animal and Plant, and in
the curious “the rest” labels. The latter can be used in any
structure, but are quite constrained (e.g., they can only be
used for one outlink per node), so there is considerable stress
on more meaningful coarse-grain semantics. So if for exam-
ple the natural semantics of a domain mostly allow the speci-
fication of small sets, one might imagine intrinsic trouble for
navigation. (Note that Example 8 has this problem.)

Carving up the world efficiently. Earlier it was noted that the
to-sets of a structure form a kind of overlapping mosaic
which, by VN1 must be mirrored in the outlink-info. Enforc-
ing the diameter requirement of EVT2 means the neighboring
to-sets have to differ more dramatically. Consider by contrast
the to-sets of the line graph, a graph with bad diameter. There
the to-sets change very slowly as one moves along, with only
one item being eliminated at a time. It is possible to show (see
[3]) that under EVT2 the overlap pattern of to-sets must be
able to whittle down the space of alternatives in a small num-
ber of intersections. The efficiency of binary partitioning is
what makes a balanced binary tree satisfy EVT2, but a very
unbalanced one not. Correspondingly an efficiently view nav-
igable hierarchy has semantics that partition into equal size
sets, yielding navigation by fast binary search. More gener-
ally, whatever structure, the semantics of the domain must
carve it up efficiently.

Summary and Discussion

The goal of the work presented here has been to gain under-
standing of view navigation, with the basic premise that scale
issues are critical. The simple mechanics of traversal require
design of the logical structure and its viewing strategy so as to
make efficient uses of time and space, by coercing things into
known EVT structures, adding long distance links, or gluing
on navigational backbones. Navigation proper requires that
all possible targets have good residue throughout the struc-

ture. Equivalently, labeling must reflect a link’s to-set, not just
the neighboring node. This requires the rich semantic repre-
sentation of a web of interlocking sets, many of them large,
that efficiently carve up the contents of the space.

Together these considerations help to understand reasons why
some information navigation schemes are,

bad: the web in general (bad residue, diameter), simple
scrolling lists (bad diameter)

mixed: geometric zoom (good diameter, poor residue),

good: semantic zoom (better residue), 3D(shorter paths),
fisheyes (even shorter paths), balanced rooted trees (short
paths and possible simple semantics)

The problem of global residue distribution is very difficult.
The taxonomies implemented in rooted trees are about the
best we have so far, but even they are hard to design and use
for all purposes. New structures should be explored (e.g.,
hypercubes, DAG’s, multitrees), but one might also consider
hybrid strategies to overcome the limits of pure navigation,
including synergies between query and navigation. For exam-
ple, global navigability may not be achievable, but local navi-
gability may be - e.g., structures where residue is distributed
reasonably only within a limited radius of a target. Then if
there is some other way to get to the right neighborhood (e.g.,
as the result of an query), it may be possible to navigate the
rest of the way. The result is query initiated browsing, an
emerging paradigm on the web. Alternatively, one might ease
the residue problem by allowing dynamic outlink-info, for
example relabeling outlinks by the result of an ad-hoc query
of the structure.

Acknowledgments. This work was supported in part by
ARPA grant N66001-94-C-6039.

REFERENCES
1. Bederson, B. B. and Hollan, J. D., PAD++: zooming graphi-

cal interface for exploring alternate interface physics. In
Proceedings of ACM UIST’94, (Marina Del Ray, CA, 1994),
ACM Press, pp 17-26.

2. Card, S. K., Pirolli, P., and Mackinlay, J. D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Pro-
ceedings of CHI’94 Human Factors in Computing Systems
(Boston, MA, April 1994), ACM press, pp. 238-244.

3. Furnas, G.W., Effectively View-Navigable Structures. Paper
presented at the 1995 Human Computer Interaction Consor-
tium Workshop (HCIC95), Snow Mountain Ranch, Colo-
rado Feb 17, 1995. Manuscript available at http://
http2.si.umich.edu/~furnas/POSTSCRIPTS/
EVN.HCIC95.workshop.paper.ps

4. Furnas, G. W., and Bederson, B., Space-Scale Diagrams:
Understanding Multiscale Interfaces. In Human Factors in
Computing Systems, CHI’95 Conference Proceedings
(ACM), Denver, Colorado, May 8-11, 1995, 234-201.

5. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface. In Proceedings of ACM SigGraph `93
(Anaheim, CA), 1993, pp. 57-64.

6. Robertson, G. G., Mackinlay, J.D., and Card, S.K., Cone
trees: animated 3D visualizations of hierarchical informa-
tion. CHI’91 Proceedings, 1991, 189-194.

ABSTRACT

In view navigation a user moves about an information struc-
ture by selecting something in the current view of the struc-
ture. This paper explores the implications of rudimentary
requirements for effective view navigation, namely that,
despite the vastness of an information structure, the views
must be small, moving around must not take too many steps
and the route to any target be must be discoverable. The
analyses help rationalize existing practice, give insight into
the difficulties, and suggest strategies for design.

KEYWORDS: Information navigation, Direct Walk, large
information structures, hypertext, searching, browsing

INTRODUCTION

When the World Wide Web (WWW) first gained popularity,
those who used it were impressed by the richness of the con-
tent accessible simply by wandering around and clicking
things seen on the screen. Soon after, struck by the near
impossibility of finding anything specific, global navigation
was largely abandoned in place of search engines. What went
wrong with pure navigation?

This work presented here seeks theoretical insight into, in
part, the problems with pure navigational access on the web.
More generally, it explores some basic issues in moving
around and finding things in various information structures,
be they webs, trees, tables, or even simple lists. The focus is
particularly on issues that arise as such structures get very
large, where interaction is seriously limited by the available
resources of space (e.g., screen real estate) and time (e.g.,
number of interactions required to get somewhere): How do
these limits in turn puts constraints on what kinds of informa-
tion structures and display strategies lead to effective naviga-
tion? How have these constraints affected practice, and how
might we live with them in future design?

We will be considering systems with static structure over
which users must navigate to find things, e.g., lists, trees,

planes, grids, graphs. The structure is assumed to contain ele-
ments of some sort (items in a list, nodes in a hypertext
graph) organized in some logical structure. We assume that
the interface given to the user is navigational, i.e., the user at
any given time is “at” some node in the structure with a view
specific to that node (e.g., of the local neighborhood), and has
the ability to move next to anything in that current view. For
example for a list the user might have window centered on a
particular current item. A click on an item at the bottom of
the window would cause that item to scroll up and become
the new “current” item in the middle of the window. In a
hypertext web, a user could follow one of the visible links in
the current hypertext page.

In this paper we will first examine view traversal, the under-
lying iterative process of viewing, selecting something seen,
and moving to it, to form a path through the structure.1 Then
we will look at the more complex view navigation where in
addition the selections try to be informed and reasonable in
the pursuit of a desired target. Thus view traversal ignores
how to decide where to go next, for view navigation that is
central.The goal throughout is to understand the implications
of resource problems arising as structures get very large.

EFFICIENT VIEW TRAVERSIBILITY

What are the basic requirements for efficient view traversal?
I.e., what are the minimal capabilities for moving around by
viewing, selecting and moving which, if not met, will make
large information structures, those encompassing thousands,
even billions of items, impractical for navigation.

Definitions and Fundamental Requirements

We assume that the elements of the information structure (the
items in a list, nodes in a hypertext graph, etc.) are organized
in a logical structure that can be characterized by a logical
structure graph, connecting elements to their logical neigh-
bors as dictated by the semantics of the domain.2 For an
ordered list this would just be line graph, with each item con-
nected to the items which proceed and follow it. For a hyper-

1 This is the style of interaction was called a direct walk by
Card, et al [2]. We choose the terminology “view traversal”
here to make explicit the view aspect, since we wish to study
the use of spatial resources needed for viewing.
2 More complete definitions, and proofs of most of the mate-
rial in this paper can be found in [3]

Effective View Navigation

George W. Furnas
School of Information
University of Michigan

(313) 763-0076
furnas@umich.edu

To appear in Human Factors in Computing Systems, CHI’97 Conference Proceedings (ACM), Atlanta GA, March 22-27, 1997.

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list

Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT(SCROLLING-LISTn) = (O(1), O(n)), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

Furnas Effective View Navigability November 26, 1996 3

Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.

Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT(BALANCED-REGULAR-TREEn) = (O(1), O(log n)) ••

•• example 3: local viewing of a hypercube

Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT(HYPERCUBEn) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures
What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions

One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT(MULTI-COLUMN-LISTn) = (O(1), O(sqrt(n)).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4 Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 4

illustrated in Figure 3 (e), where the part of the viewing
graph in (c) is shown in the unfolded version of the list.••

The critical thing to note in the example is that some of the
links of the viewing graph point to nodes that are not local in
the logical structure of the graph. This is a very general class
of strategies for decreasing the diameter of the viewing graph,
further illustrated in the next example.

•• example 5: fixing the list (version 2) - fisheye sampling

It is possible to use non-local viewing links to improve
even further the view-traversability of a list. Figure 3
shows a viewing strategy where the nodes included in a
view are spaced in a geometric series. That is, from the
current node, one can see the nodes that are at a distance
1, 2, 4, 8, 16,... away in the list. This sampling pattern
might be called a kind of fisheye sampling, in that it
shows the local part of the list in most detail, and further
regions in successively less detail.

This strategy results in a view size that is logarithmic in
the size of the list. Moving from one node to another ends
up to be a process much like a binary search, and gives a
diameter of the viewing graph that is also logarithmic.
Thus

EVT(FISHEYE-SAMPLED-LISTn) = (O(log n), O(log n)).

Note that variations of this fisheye sampling strategy can
yield good EVT performance for many other structures,
including 2D and 3D grids. ••

The lesson from examples 4 and 5 is that even if the logical
structure is not EVT, it is possible to make the viewing struc-
ture EVT by adding long-distance links.

•• example 6: fixing the list (version 3) - tree augmentation

In addition to just adding links, one can also adding nodes
to the viewing graph that are not in the original logical
structure. This allows various shortcut paths to share
structure, and reduce the total number of links needed,

Figure 4. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) part of viewing graph of fish-
eye sampled list, showing that out degree is
O(log(n)), (c) sample actually selected from list (d)
view actually given, of size O(log(n)), (e) illustration
of how diameter of viewing graph is now O(log(n)).

(a) (b) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple...

...endive...

ginger

herbs

indigo

jicama

kale...

...mango...

...quince

(d)(c)
and hence the general outdegree. For example, one can
glue a structure known to be EVT onto a given non-EVT
structure. In Figure 2 a tree is glued onto the side of the
list and traversal is predominantly through the tree. Thus
in Figure 2, new nodes are introduced (O(n)), and viewing
links are introduced in the form of a tree. Since the outde-
grees everywhere are of size ≤3, and logarithmic length
paths now exist between the original nodes by going
through the tree, we get

EVT(TREE-AUGMENTED-LISTn) = (O(1), O(log n)). ••

Although there is not enough space here for details, we note
in passing that an EVT analysis of zoomable interfaces is
valuable in clarifying one of their dramatic advantages -- the
diameter of the space is reduced from O(sqrt(n)) to O(log n).
[3][4]

Remarks about Efficient View Traversability

Efficient View Traversability is a minimal essential condition
for view navigation of very large information structures. In a
straight forward way it helps to explain why simple list view-
ers do not scale, why phone books and cone-trees exploit 3D,
why trees and fisheyes and zooms all help.

EVT analysis also suggests strategies for design. One can try
to coerce an information world into a representation which
naturally supports EVT1 and EVT2, e.g., the common prac-
tice of trying to represent things in trees. Alternatively one
can fix a poor structure by adding long-distance links, or add-
ing on another complete structure. Note that in general, the
impact of selectively adding links can be much greater on
decreasing diameter than on increasing view sizes, to net pos-
itive effect. One result of this simple insight is a general ver-
sion of the tree augmentation strategy. In general terms,
gluing any good EVT graph onto a bad one will make a new
structure as good as the good graph in diameter, and not much
worse than the worse of the two in outdegree. I.e., always
remember the strategy of putting a traversable infrastructure
on an otherwise unruly information structure!

Efficiently view traversable structures have an additional
interesting property, “jump and show”: an arbitrary non-nav-
igational jump (e.g., as the result of a query search) from one
location to another has a corresponding view traversal version
with a small rendering: a small number of steps each requir-

Figure 5. Improving EVT of a list by adding a tree.
The resulting structure has constant viewsize but
logarithmic diameter

(a) (c)(b)

Furnas Effective View Navigability November 26, 1996 5

ing a small view will suffice. Thus a short movie or small
map will show the user how they could have done a direct
walk from their old location to their new one. A similar con-
cept was explored for continuous Pan&Zoom in [4].

NAVIGABILITY

Efficient view traversability is not enough: it does little good
if a short traversal path to a destination exists but that path is
unfindable. It must be possible somehow to read the structure
to find good paths; the structure must be view navigable.

For analysis we imagine the simple case of some navigator
process searching for a particular target, proceeding by com-
paring it to information associated with each outlink in its
current view (outlink-info, e.g. a label). From this compari-
son, it decides which link to follow next.

In this paper we will explore an idealization, strong naviga-
bility , requiring that the structure and its outlink-info allow
the navigator (1) to find the shortest path to the target (2)
without error and (3) in a history-less fashion (meaning it can
make the right choice at each step by looking only at what is
visible in the current node). We examine this case because it
is tractable, because it leads to suggestive results, and
because, as a desirable fantasy, its limits are worth under-
standing.

To understand when strong view navigation is possible, a few
definitions are needed. They are illustrated in Figure 6 .

Consider a navigator at some node seeking the shortest path
to a target. A given link is a defensible next step only for cer-

Figure 6 The outlink-info for link A-->i is an enumeration,
and for A-->n is a feature (a shaded circle). These are
both well matched. The link info for links to the right of
A is not-well matched. The residue of f at A is the
shaded-circle label. The residue of e at A is its appear-
ance in the enumeration label. The node g has residue
in the upper right enumeration label at A, but it is not
good residue. The node h has no residue at A.

Link A-->n A-->u A-->i A-->d

to-set {c,f,k,p,r,s} {c,f,u,p,s} {e,i,m,t} {b,d,g,h,j,l,o,q,s}

outlink-info

inferred to-set <c,f,k,p,r,s> <g,x,y,z> <e,i,m,t> <?>

g x y z e i m t

f
p

c

t
h

r

u

i

o

g

j

k n

l b

e

s

m

A

d

q

e i m t

g x y z

tain targets -- the link must be on a shortest path to those tar-
gets. We call this set of targets the to-set of the link, basically
the targets the link efficiently “leads to”. If the navigator’s tar-
get is in the to-set of a link, it can follow that link.

We assume, however, that the navigator does not know the to-
set of a link directly; it is a global property of the structure of
the graph. The navigator only has access to the locally avail-
able outlink-info which it will match against its target to
decide what link to take. We define the inferred-to-set of a
link to be the set of all target nodes that the associated out-
link-info would seem to indicate is down that link (the targets
that would match the outlink-info), which could be a different
set entirely.

In fact, we say that the outlink-info of a link is not misleading
with respect to a target when the target being in the inferred-
to-set implies it is in the true to-set, or in other words when
the outlink-info does not mislead the navigator to take a step
it should not take. (Note that the converse is not being
required here; the outlink-info need not be complete, and may
underspecify its true-to-set.)

Next we say that the outlink-info of node as a whole is said to
be well-matched with respect to a target if none of its outlink-
info is misleading with respect to that target, and if the target
is in the inferred-to-set of at least one outlink. Further we say
that the outlink information at a node is simply well-matched
iff it is well-matched with respect to all possible targets.

We now state the following straightforward proposition:

Proposition (navigability): The navigator is guaran-
teed to always find shortest paths to targets iff the
outlink-info is everywhere well-matched.

Hence, the following requirement for a strongly navigable
world:

Requirement VN1(navigability): The outlink-info
must be everywhere well matched.

The critical observation in all this for designing navigable
information systems is that, to be navigable, the outlink-info
of a link must in some sense describe not just the next node,
but the whole to-set. This is a problem in many hypertext sys-
tems, including the WWW: Their link-labels indicate adja-
cent nodes and do not tell what else lies beyond, in the whole
to-set. In a sense, for navigation purposes, “highway signage”
might be a better metaphor for good outlink-info than “label”.
The information has to convey what is off in that direction,
off along that route, rather than just where it will get to next.
As we will see shortly, this is a difficult requirement in prac-
tice.

First, however, we turn the analysis on its head. The perspec-
tive so far has been in terms of how the world looks to a navi-
gator that successively follows outlinks using outlink-info
until it gets to its target: the navigator wants a world in which
it can find its target. Now let us think about the situation from
the other side -- how the world looks from the perspective of
a target, with the assumption that targets want a world in
which they can be found. This complementary perspective
brings up the important notion of residue or scent .The resi-

Furnas Effective View Navigability November 26, 1996 6

due or scent of a target is the remote indication of that target
in outlink-info throughout the information structure. More
precisely, a target has residue at a link if the associated out-
link-info would lead the navigator to take that link in pursuit
of the given target, i.e., to put the target in the inferred-to-set
of the link. If the navigator was not being mislead, i.e, the
outlink-info was well-matched for that target, then we say the
residue was good residue for the target.(Refer back to the
caption of Figure 6).

An alternate formulation of the Navigability proposition says
that in order to be findable by navigation from anywhere in
the structure, a target must have good residue at every node.
I.e., in order to be able to find a target, the navigator must
have some scent, some residue, of it, no matter where the
navigator is, to begin chasing down its trail.

Furthermore, if every target is to be findable, we need the fol-
lowing requirement, really an alternate statement of VN1:

Requirement VN1a (residue distribution): Every
node must have good residue at every other node.

This is a daunting challenge. There are numerous examples
of real world information structures without good residue dis-
tribution. Consider the WWW. You want to find some target
from your current location, but do not have a clue of how to
navigate there because your target has no good-residue here.
There is no trace of it in the current view. This is a fundamen-
tal reason why the WWW is not navigable. For another
example consider pan&zoom interfaces to information
worlds, like PAD[5]. If you zoom out too far, your target can
become unrecognizable, or disappear entirely leaving no resi-
due, and you cannot navigate back to it. This has lead to a
notion of semantic zooming [1] [5] , where the appearance of
an object changes as its size changes so that it stays visually
comprehensible, or at least visible -- essentially a design
move to preserve good residue.

The VN1 requirements are difficult basically because of the
following scaling constraint.

Requirement VN2. Outlink-info must be “small”.

To understand this requirement and its impact, consider that
one way to get perfect matching or equivalently perfect glo-
bal residue distributions would be to have an exhaustive list,
or enumeration, of the to-set as the outlink-info for each link
(i.e., each link is labeled by listing the complete set of things
it “leads to”, as in the label of the lower left outlink from node
A in). Thus collectively between all the outlinks at each node
there is a full listing of the structure, and such a complete
union list must exist at each node. This “enumeration” strat-
egy is presumably not feasible for view navigation since,
being O(n2), it does not scale well. Thus, the outlink-info
must somehow accurately specify the corresponding to-set in
some way more efficient than enumeration, using more con-
ceptually complex representations, requiring semantic
notions like attributes (Red) and abstraction (LivingThings).

The issues underlying good residue, its representation and
distribution, are intriguing and complex. Only a few modest
observations will be listed here.

Remarks on View Navigability

Trees revisited. One of the most familiar navigable informa-
tion structures is a rooted tree in the form of classification
hierarchies like biological taxonomies or simple library clas-
sification schemes like the dewey decimal system. In the tra-
versability section of this paper, balanced trees in their
completely unlabeled form were hailed as having good tra-
versal properties just as graphs. Here there is an entirely dif-
ferent point: a systematic labeling of a rooted tree as a
hierarchy can make it in addition a reasonably navigable
structure. Starting at the root of a biological taxonomy, one
can take Cat as a target and decide in turn, is it an Animal or a
Plant, is it a Vertebrate or Invertebrate, etc. and with enough
knowledge enough about cats, have a reasonable (though not
certain!) chance of navigating the way down to the Cat leaf
node in the structure. This is so familiar it seems trivial, but it
is not.

First let us understand why the hierarchy works in terms of
the vocabulary of this paper. There is well matched out-link
info at each node along the way: the Vertebrate label leads to
the to-set of vertebrates, etc. and the navigator is not misled.
Alternately, note that the Cat leaf-node has good residue
everywhere. This is most explicit in the Animal, Vertebrate,
Mammal,... nodes along the way from the root, but there is
also implicit good residue throughout the structure. At the
Maple node, in addition to the SugarMaple and NorwayMa-
ple children, neither of which match Cat, there is the upward
outlink returning towards the root, implicitly labeled “The
Rest”, which Cat does match, and which is good residue. This
superficial explanation has beneath it a number of critical
subtleties, general properties of the semantic labeling scheme
that rely on the richness of the notion of cat, the use of large
semantic categories, and the subtle web woven from of these
categories. These subtleties, all implied by the theory of view
navigation and efficient traversability not only help explain
why hierarchies work when they do, but also give hints how
other structures, like hypertext graphs of the world wide web,
might be made navigable.

To understand the navigation challenge a bit, consider the
how bad things could be.

The spectre of essential non-navigability. Cons ider tha t
Requirement VN2 implies that typically the minimum
description length of the to-sets must be small compared to
the size of those sets. In information theory that is equivalent
to requiring that the to-sets are not random. Thus,

•• example 7: non-navigable 1 - completely unrelated items.

A set of n completely unrelated things is intrinsically not
navigable. To see this consider an abstract alphabet of size
n. Any subset (e.g., a to-set) is information full, with no
structure or redundancy, and an individual set cannot be
specified except by enumeration. As a result it is not hard
to show there is no structure for organizing these n things,
whose outlinks can be labeled except with predominant

Furnas Effective View Navigability November 26, 1996 7

use of enumeration5, and so overall VN2 would be vio-
lated. ••

Such examples help in understanding navigability in the
abstract, and raise the point that insofar as the real world is
like such sets (is the web too random?), designing navigable
systems is going to be hard. Having set two extremes, the rea-
sonably navigable and the unnavigable, consider next a num-
ber of general deductions about view navigation.

Navigability requires representation of many sets. Every
link has an associated toset that must be labeled. This means
that the semantics of the domain must be quite rich to allow
all these sets to have appropriate characterizations (like,
RedThings, Cars, ThingsThatSleep). Similarly since a target
must have residue at every node, each target must belong to n
of these sets -- in stark contrast to the impoverished semantics
of the purely random non-navigable example.

Navigability requires an interlocking web of set
representations. Furthermore, these to-sets are richly inter-
dependent. Consider the local part of some structure shown in
Figure 7. Basically, the navigator should go to y to get to the

targets available from y. In other words the to-set, A, out of x ,
is largely made up of the to-sets B and C out of neighboring y.
(The exceptions, which are few in many structures, are those
targets with essentially an equally good path from x and y.)
This indicates that a highly constrained interlocking web of
tosets and corresponding semantics and labels must be
woven. In a hierarchy the to-sets moving from the root form
successive partitions and view navigability is obtained by
labeling those links with category labels that semantically
carve up the sets correspondingly. Animals leads, not to
“BrownThings” and “LargeThings” but to Vertebrates and
Invertebrates -- a conceptual partition the navigator can
decode mirroring an actual partition in the toset. Other struc-
tures do not often admit such nice partitioning semantics. It is
unclear what other structures have to-sets and webs of seman-
tic labelings that can be made to mirror each other.

Residue as a shared resource. Since ubiquitous enumera-
tion is not feasible, each target does not get its own explicit
listing in outlink-info everywhere. It follows that in some
sense, targets must typically share residue. The few bits of
outlink-info are a scarce resource whose global distribution
must be carefully structured, and not left to grow willy-nilly.
To see this consider putting a new page up on the web. In the-
ory, for strong navigability, every other node in the net must
suddenly have good residue for this new page! Note how
cleverly this can be handled in a carefully crafted hierarchy.

5 Technically, use of enumeration must dominate but need not
be ubiquitous. Some equivalent of the short label “the rest” can
be used for some links, but this can be shown not to rescue the
situation.

x
A

C

B
y

Figure 7. Two adjacent nodes, x and y, in a structure.
The to-sets associated with each outlink are
labeled in upper case.

All the many vertebrates share the short Vertebrate label as
residue. Global distribution is maintained by the careful
placement of new items: put a new vertebrate in the right
branch of the tree, and it shares the existing good residue. It is
probably no accident that the emerging large navigable sub-
structures over the web, e.g. Yahoo!, arise in a carefully
crafted hierarchical overlay with careful administrative super-
vision attending to the global distribution of this scare residue
resource.

Similarity-based navigation. One interesting class of naviga-
ble structures makes use of similarity both to organize the
structure and run the navigator. Objects are at nodes, and
there is some notion of similarity between objects. The out-
link-info of a link simply indicates the object at other end of
link. The navigator can compute the similarity between
objects, and chooses the outlink whose associated object is
most similar to its ultimate target, in this way hill-climbing up
a similarity gradient until the target is reached. One might
navigate through color space in this way, moving always
towards the neighboring color that is most similar to the tar-
get. Or one might try to navigate through the WWW by
choosing an adjacent page that seems most like what one is
pursuing (this would be likely to fail in general).

Similarity based navigation requires that nodes for similar
objects be pretty closely linked in the structure, but that is not
sufficient. There can be sets of things which have differential
similarity (not completely unrelated as in the non-navigable
example 6), and which can be linked to reflect that similarity
perfectly, but which are still fundamentally non-navigable,
essentially because all similarity is purely local, and so there
is no good-residue of things far away.

•• example 8: non-navigable set 2 - locally related structure.

This example concerns sets with arbitrary similarity struc-
ture but only local semantics, and that are hence non-nav-
igable.Take any graph of interest, for example the line
graph below. Take an alphabet as large as the number of
links in the graph, and randomly assign the letters to the
links. Now make “objects” at the nodes that are collec-
tions of the letters on the adjacent links:

Despite the fact that “similar” objects are adjacent in this
organization, there is no way to know how to get from,
say, LG to anything other than its immediate neighbors:
There is no good-residue of things far away ••

This example might be a fair approximation to the WWW --
pages might indeed be similar, or at least closely related, to
their neighbors, yet it is in general a matter of relatively
small, purely local features, and cannot support navigation.

Weaker models of navigability. Suppose we were to relax
strong navigability, for example abandoning the need for
every target to have residue at the current node. Even then
resource constraints dictate that it be possible to explore in a
small amount of time and find appropriate good residue.This
suggests that this relaxation will not dramatically alter the
general conclusions. Imagine that you could sit at a node and
send out a pack of seeing-eye bloodhounds looking for scent
at each step. This really amounts to just changing the viewing

J P B X L G V M T N S

J JP PB BX XL LG GV VM MT TN NS S

Furnas Effective View Navigability November 26, 1996 8

graph, including the sphere that the bloodhounds can see
(smell?) into the “viewed” neighbors. The constraints on how
many hounds and how long they can explore basically
remains a constraint on outdegree in the revised graph.

Combining EVT + VN = Effective View Navigability (EVN)

If we want an information structure that is both efficiently tra-
versable, and is strongly view navigable, then both the
mechanical constraints of EVT on diameter and outdegree
and the residue constraints of VN must hold. In this section
we make some informal observations about how the two sets
of constraints interact.

Large scale semantics dominate. Since by assumption
everything can be reached from a given node, the union of the
to-sets at each node form the whole set of n items in the struc-
ture. If there are v links leaving the node, the average size of
the to-set is n/v. If the structure satisfies EVT2, then v is small
compared to n, so the average to-set is quite large.

The significance of this is that VN1 requires that outlink-info
faithfully represent these large to-sets. If we assume the rep-
resentations are related to the semantics of objects, and that
representations of large sets are in some sense high level
semantics, it follows that high level semantics play a domi-
nant role in navigable structures. In a hierarchy this is seen in
both the broad category labels like Animal and Plant, and in
the curious “the rest” labels. The latter can be used in any
structure, but are quite constrained (e.g., they can only be
used for one outlink per node), so there is considerable stress
on more meaningful coarse-grain semantics. So if for exam-
ple the natural semantics of a domain mostly allow the speci-
fication of small sets, one might imagine intrinsic trouble for
navigation. (Note that Example 8 has this problem.)

Carving up the world efficiently. Earlier it was noted that the
to-sets of a structure form a kind of overlapping mosaic
which, by VN1 must be mirrored in the outlink-info. Enforc-
ing the diameter requirement of EVT2 means the neighboring
to-sets have to differ more dramatically. Consider by contrast
the to-sets of the line graph, a graph with bad diameter. There
the to-sets change very slowly as one moves along, with only
one item being eliminated at a time. It is possible to show (see
[3]) that under EVT2 the overlap pattern of to-sets must be
able to whittle down the space of alternatives in a small num-
ber of intersections. The efficiency of binary partitioning is
what makes a balanced binary tree satisfy EVT2, but a very
unbalanced one not. Correspondingly an efficiently view nav-
igable hierarchy has semantics that partition into equal size
sets, yielding navigation by fast binary search. More gener-
ally, whatever structure, the semantics of the domain must
carve it up efficiently.

Summary and Discussion

The goal of the work presented here has been to gain under-
standing of view navigation, with the basic premise that scale
issues are critical. The simple mechanics of traversal require
design of the logical structure and its viewing strategy so as to
make efficient uses of time and space, by coercing things into
known EVT structures, adding long distance links, or gluing
on navigational backbones. Navigation proper requires that
all possible targets have good residue throughout the struc-

ture. Equivalently, labeling must reflect a link’s to-set, not just
the neighboring node. This requires the rich semantic repre-
sentation of a web of interlocking sets, many of them large,
that efficiently carve up the contents of the space.

Together these considerations help to understand reasons why
some information navigation schemes are,

bad: the web in general (bad residue, diameter), simple
scrolling lists (bad diameter)

mixed: geometric zoom (good diameter, poor residue),

good: semantic zoom (better residue), 3D(shorter paths),
fisheyes (even shorter paths), balanced rooted trees (short
paths and possible simple semantics)

The problem of global residue distribution is very difficult.
The taxonomies implemented in rooted trees are about the
best we have so far, but even they are hard to design and use
for all purposes. New structures should be explored (e.g.,
hypercubes, DAG’s, multitrees), but one might also consider
hybrid strategies to overcome the limits of pure navigation,
including synergies between query and navigation. For exam-
ple, global navigability may not be achievable, but local navi-
gability may be - e.g., structures where residue is distributed
reasonably only within a limited radius of a target. Then if
there is some other way to get to the right neighborhood (e.g.,
as the result of an query), it may be possible to navigate the
rest of the way. The result is query initiated browsing, an
emerging paradigm on the web. Alternatively, one might ease
the residue problem by allowing dynamic outlink-info, for
example relabeling outlinks by the result of an ad-hoc query
of the structure.

Acknowledgments. This work was supported in part by
ARPA grant N66001-94-C-6039.

REFERENCES
1. Bederson, B. B. and Hollan, J. D., PAD++: zooming graphi-

cal interface for exploring alternate interface physics. In
Proceedings of ACM UIST’94, (Marina Del Ray, CA, 1994),
ACM Press, pp 17-26.

2. Card, S. K., Pirolli, P., and Mackinlay, J. D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Pro-
ceedings of CHI’94 Human Factors in Computing Systems
(Boston, MA, April 1994), ACM press, pp. 238-244.

3. Furnas, G.W., Effectively View-Navigable Structures. Paper
presented at the 1995 Human Computer Interaction Consor-
tium Workshop (HCIC95), Snow Mountain Ranch, Colo-
rado Feb 17, 1995. Manuscript available at http://
http2.si.umich.edu/~furnas/POSTSCRIPTS/
EVN.HCIC95.workshop.paper.ps

4. Furnas, G. W., and Bederson, B., Space-Scale Diagrams:
Understanding Multiscale Interfaces. In Human Factors in
Computing Systems, CHI’95 Conference Proceedings
(ACM), Denver, Colorado, May 8-11, 1995, 234-201.

5. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface. In Proceedings of ACM SigGraph `93
(Anaheim, CA), 1993, pp. 57-64.

6. Robertson, G. G., Mackinlay, J.D., and Card, S.K., Cone
trees: animated 3D visualizations of hierarchical informa-
tion. CHI’91 Proceedings, 1991, 189-194.

ABSTRACT

In view navigation a user moves about an information struc-
ture by selecting something in the current view of the struc-
ture. This paper explores the implications of rudimentary
requirements for effective view navigation, namely that,
despite the vastness of an information structure, the views
must be small, moving around must not take too many steps
and the route to any target be must be discoverable. The
analyses help rationalize existing practice, give insight into
the difficulties, and suggest strategies for design.

KEYWORDS: Information navigation, Direct Walk, large
information structures, hypertext, searching, browsing

INTRODUCTION

When the World Wide Web (WWW) first gained popularity,
those who used it were impressed by the richness of the con-
tent accessible simply by wandering around and clicking
things seen on the screen. Soon after, struck by the near
impossibility of finding anything specific, global navigation
was largely abandoned in place of search engines. What went
wrong with pure navigation?

This work presented here seeks theoretical insight into, in
part, the problems with pure navigational access on the web.
More generally, it explores some basic issues in moving
around and finding things in various information structures,
be they webs, trees, tables, or even simple lists. The focus is
particularly on issues that arise as such structures get very
large, where interaction is seriously limited by the available
resources of space (e.g., screen real estate) and time (e.g.,
number of interactions required to get somewhere): How do
these limits in turn puts constraints on what kinds of informa-
tion structures and display strategies lead to effective naviga-
tion? How have these constraints affected practice, and how
might we live with them in future design?

We will be considering systems with static structure over
which users must navigate to find things, e.g., lists, trees,

planes, grids, graphs. The structure is assumed to contain ele-
ments of some sort (items in a list, nodes in a hypertext
graph) organized in some logical structure. We assume that
the interface given to the user is navigational, i.e., the user at
any given time is “at” some node in the structure with a view
specific to that node (e.g., of the local neighborhood), and has
the ability to move next to anything in that current view. For
example for a list the user might have window centered on a
particular current item. A click on an item at the bottom of
the window would cause that item to scroll up and become
the new “current” item in the middle of the window. In a
hypertext web, a user could follow one of the visible links in
the current hypertext page.

In this paper we will first examine view traversal, the under-
lying iterative process of viewing, selecting something seen,
and moving to it, to form a path through the structure.1 Then
we will look at the more complex view navigation where in
addition the selections try to be informed and reasonable in
the pursuit of a desired target. Thus view traversal ignores
how to decide where to go next, for view navigation that is
central.The goal throughout is to understand the implications
of resource problems arising as structures get very large.

EFFICIENT VIEW TRAVERSIBILITY

What are the basic requirements for efficient view traversal?
I.e., what are the minimal capabilities for moving around by
viewing, selecting and moving which, if not met, will make
large information structures, those encompassing thousands,
even billions of items, impractical for navigation.

Definitions and Fundamental Requirements

We assume that the elements of the information structure (the
items in a list, nodes in a hypertext graph, etc.) are organized
in a logical structure that can be characterized by a logical
structure graph, connecting elements to their logical neigh-
bors as dictated by the semantics of the domain.2 For an
ordered list this would just be line graph, with each item con-
nected to the items which proceed and follow it. For a hyper-

1 This is the style of interaction was called a direct walk by
Card, et al [2]. We choose the terminology “view traversal”
here to make explicit the view aspect, since we wish to study
the use of spatial resources needed for viewing.
2 More complete definitions, and proofs of most of the mate-
rial in this paper can be found in [3]

Effective View Navigation

George W. Furnas
School of Information
University of Michigan

(313) 763-0076
furnas@umich.edu

To appear in Human Factors in Computing Systems, CHI’97 Conference Proceedings (ACM), Atlanta GA, March 22-27, 1997.

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list

Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT(SCROLLING-LISTn) = (O(1), O(n)), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

Furnas Effective View Navigability November 26, 1996 3

Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.

Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT(BALANCED-REGULAR-TREEn) = (O(1), O(log n)) ••

•• example 3: local viewing of a hypercube

Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT(HYPERCUBEn) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures
What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions

One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT(MULTI-COLUMN-LISTn) = (O(1), O(sqrt(n)).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4 Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 4

illustrated in Figure 3 (e), where the part of the viewing
graph in (c) is shown in the unfolded version of the list.••

The critical thing to note in the example is that some of the
links of the viewing graph point to nodes that are not local in
the logical structure of the graph. This is a very general class
of strategies for decreasing the diameter of the viewing graph,
further illustrated in the next example.

•• example 5: fixing the list (version 2) - fisheye sampling

It is possible to use non-local viewing links to improve
even further the view-traversability of a list. Figure 3
shows a viewing strategy where the nodes included in a
view are spaced in a geometric series. That is, from the
current node, one can see the nodes that are at a distance
1, 2, 4, 8, 16,... away in the list. This sampling pattern
might be called a kind of fisheye sampling, in that it
shows the local part of the list in most detail, and further
regions in successively less detail.

This strategy results in a view size that is logarithmic in
the size of the list. Moving from one node to another ends
up to be a process much like a binary search, and gives a
diameter of the viewing graph that is also logarithmic.
Thus

EVT(FISHEYE-SAMPLED-LISTn) = (O(log n), O(log n)).

Note that variations of this fisheye sampling strategy can
yield good EVT performance for many other structures,
including 2D and 3D grids. ••

The lesson from examples 4 and 5 is that even if the logical
structure is not EVT, it is possible to make the viewing struc-
ture EVT by adding long-distance links.

•• example 6: fixing the list (version 3) - tree augmentation

In addition to just adding links, one can also adding nodes
to the viewing graph that are not in the original logical
structure. This allows various shortcut paths to share
structure, and reduce the total number of links needed,

Figure 4. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) part of viewing graph of fish-
eye sampled list, showing that out degree is
O(log(n)), (c) sample actually selected from list (d)
view actually given, of size O(log(n)), (e) illustration
of how diameter of viewing graph is now O(log(n)).

(a) (b) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple...

...endive...

ginger

herbs

indigo

jicama

kale...

...mango...

...quince

(d)(c)
and hence the general outdegree. For example, one can
glue a structure known to be EVT onto a given non-EVT
structure. In Figure 2 a tree is glued onto the side of the
list and traversal is predominantly through the tree. Thus
in Figure 2, new nodes are introduced (O(n)), and viewing
links are introduced in the form of a tree. Since the outde-
grees everywhere are of size ≤3, and logarithmic length
paths now exist between the original nodes by going
through the tree, we get

EVT(TREE-AUGMENTED-LISTn) = (O(1), O(log n)). ••

Although there is not enough space here for details, we note
in passing that an EVT analysis of zoomable interfaces is
valuable in clarifying one of their dramatic advantages -- the
diameter of the space is reduced from O(sqrt(n)) to O(log n).
[3][4]

Remarks about Efficient View Traversability

Efficient View Traversability is a minimal essential condition
for view navigation of very large information structures. In a
straight forward way it helps to explain why simple list view-
ers do not scale, why phone books and cone-trees exploit 3D,
why trees and fisheyes and zooms all help.

EVT analysis also suggests strategies for design. One can try
to coerce an information world into a representation which
naturally supports EVT1 and EVT2, e.g., the common prac-
tice of trying to represent things in trees. Alternatively one
can fix a poor structure by adding long-distance links, or add-
ing on another complete structure. Note that in general, the
impact of selectively adding links can be much greater on
decreasing diameter than on increasing view sizes, to net pos-
itive effect. One result of this simple insight is a general ver-
sion of the tree augmentation strategy. In general terms,
gluing any good EVT graph onto a bad one will make a new
structure as good as the good graph in diameter, and not much
worse than the worse of the two in outdegree. I.e., always
remember the strategy of putting a traversable infrastructure
on an otherwise unruly information structure!

Efficiently view traversable structures have an additional
interesting property, “jump and show”: an arbitrary non-nav-
igational jump (e.g., as the result of a query search) from one
location to another has a corresponding view traversal version
with a small rendering: a small number of steps each requir-

Figure 5. Improving EVT of a list by adding a tree.
The resulting structure has constant viewsize but
logarithmic diameter

(a) (c)(b)

Furnas Effective View Navigability November 26, 1996 5

ing a small view will suffice. Thus a short movie or small
map will show the user how they could have done a direct
walk from their old location to their new one. A similar con-
cept was explored for continuous Pan&Zoom in [4].

NAVIGABILITY

Efficient view traversability is not enough: it does little good
if a short traversal path to a destination exists but that path is
unfindable. It must be possible somehow to read the structure
to find good paths; the structure must be view navigable.

For analysis we imagine the simple case of some navigator
process searching for a particular target, proceeding by com-
paring it to information associated with each outlink in its
current view (outlink-info, e.g. a label). From this compari-
son, it decides which link to follow next.

In this paper we will explore an idealization, strong naviga-
bility , requiring that the structure and its outlink-info allow
the navigator (1) to find the shortest path to the target (2)
without error and (3) in a history-less fashion (meaning it can
make the right choice at each step by looking only at what is
visible in the current node). We examine this case because it
is tractable, because it leads to suggestive results, and
because, as a desirable fantasy, its limits are worth under-
standing.

To understand when strong view navigation is possible, a few
definitions are needed. They are illustrated in Figure 6 .

Consider a navigator at some node seeking the shortest path
to a target. A given link is a defensible next step only for cer-

Figure 6 The outlink-info for link A-->i is an enumeration,
and for A-->n is a feature (a shaded circle). These are
both well matched. The link info for links to the right of
A is not-well matched. The residue of f at A is the
shaded-circle label. The residue of e at A is its appear-
ance in the enumeration label. The node g has residue
in the upper right enumeration label at A, but it is not
good residue. The node h has no residue at A.

Link A-->n A-->u A-->i A-->d

to-set {c,f,k,p,r,s} {c,f,u,p,s} {e,i,m,t} {b,d,g,h,j,l,o,q,s}

outlink-info

inferred to-set <c,f,k,p,r,s> <g,x,y,z> <e,i,m,t> <?>

g x y z e i m t

f
p

c

t
h

r

u

i

o

g

j

k n

l b

e

s

m

A

d

q

e i m t

g x y z

tain targets -- the link must be on a shortest path to those tar-
gets. We call this set of targets the to-set of the link, basically
the targets the link efficiently “leads to”. If the navigator’s tar-
get is in the to-set of a link, it can follow that link.

We assume, however, that the navigator does not know the to-
set of a link directly; it is a global property of the structure of
the graph. The navigator only has access to the locally avail-
able outlink-info which it will match against its target to
decide what link to take. We define the inferred-to-set of a
link to be the set of all target nodes that the associated out-
link-info would seem to indicate is down that link (the targets
that would match the outlink-info), which could be a different
set entirely.

In fact, we say that the outlink-info of a link is not misleading
with respect to a target when the target being in the inferred-
to-set implies it is in the true to-set, or in other words when
the outlink-info does not mislead the navigator to take a step
it should not take. (Note that the converse is not being
required here; the outlink-info need not be complete, and may
underspecify its true-to-set.)

Next we say that the outlink-info of node as a whole is said to
be well-matched with respect to a target if none of its outlink-
info is misleading with respect to that target, and if the target
is in the inferred-to-set of at least one outlink. Further we say
that the outlink information at a node is simply well-matched
iff it is well-matched with respect to all possible targets.

We now state the following straightforward proposition:

Proposition (navigability): The navigator is guaran-
teed to always find shortest paths to targets iff the
outlink-info is everywhere well-matched.

Hence, the following requirement for a strongly navigable
world:

Requirement VN1(navigability): The outlink-info
must be everywhere well matched.

The critical observation in all this for designing navigable
information systems is that, to be navigable, the outlink-info
of a link must in some sense describe not just the next node,
but the whole to-set. This is a problem in many hypertext sys-
tems, including the WWW: Their link-labels indicate adja-
cent nodes and do not tell what else lies beyond, in the whole
to-set. In a sense, for navigation purposes, “highway signage”
might be a better metaphor for good outlink-info than “label”.
The information has to convey what is off in that direction,
off along that route, rather than just where it will get to next.
As we will see shortly, this is a difficult requirement in prac-
tice.

First, however, we turn the analysis on its head. The perspec-
tive so far has been in terms of how the world looks to a navi-
gator that successively follows outlinks using outlink-info
until it gets to its target: the navigator wants a world in which
it can find its target. Now let us think about the situation from
the other side -- how the world looks from the perspective of
a target, with the assumption that targets want a world in
which they can be found. This complementary perspective
brings up the important notion of residue or scent .The resi-

Furnas Effective View Navigability November 26, 1996 6

due or scent of a target is the remote indication of that target
in outlink-info throughout the information structure. More
precisely, a target has residue at a link if the associated out-
link-info would lead the navigator to take that link in pursuit
of the given target, i.e., to put the target in the inferred-to-set
of the link. If the navigator was not being mislead, i.e, the
outlink-info was well-matched for that target, then we say the
residue was good residue for the target.(Refer back to the
caption of Figure 6).

An alternate formulation of the Navigability proposition says
that in order to be findable by navigation from anywhere in
the structure, a target must have good residue at every node.
I.e., in order to be able to find a target, the navigator must
have some scent, some residue, of it, no matter where the
navigator is, to begin chasing down its trail.

Furthermore, if every target is to be findable, we need the fol-
lowing requirement, really an alternate statement of VN1:

Requirement VN1a (residue distribution): Every
node must have good residue at every other node.

This is a daunting challenge. There are numerous examples
of real world information structures without good residue dis-
tribution. Consider the WWW. You want to find some target
from your current location, but do not have a clue of how to
navigate there because your target has no good-residue here.
There is no trace of it in the current view. This is a fundamen-
tal reason why the WWW is not navigable. For another
example consider pan&zoom interfaces to information
worlds, like PAD[5]. If you zoom out too far, your target can
become unrecognizable, or disappear entirely leaving no resi-
due, and you cannot navigate back to it. This has lead to a
notion of semantic zooming [1] [5] , where the appearance of
an object changes as its size changes so that it stays visually
comprehensible, or at least visible -- essentially a design
move to preserve good residue.

The VN1 requirements are difficult basically because of the
following scaling constraint.

Requirement VN2. Outlink-info must be “small”.

To understand this requirement and its impact, consider that
one way to get perfect matching or equivalently perfect glo-
bal residue distributions would be to have an exhaustive list,
or enumeration, of the to-set as the outlink-info for each link
(i.e., each link is labeled by listing the complete set of things
it “leads to”, as in the label of the lower left outlink from node
A in). Thus collectively between all the outlinks at each node
there is a full listing of the structure, and such a complete
union list must exist at each node. This “enumeration” strat-
egy is presumably not feasible for view navigation since,
being O(n2), it does not scale well. Thus, the outlink-info
must somehow accurately specify the corresponding to-set in
some way more efficient than enumeration, using more con-
ceptually complex representations, requiring semantic
notions like attributes (Red) and abstraction (LivingThings).

The issues underlying good residue, its representation and
distribution, are intriguing and complex. Only a few modest
observations will be listed here.

Remarks on View Navigability

Trees revisited. One of the most familiar navigable informa-
tion structures is a rooted tree in the form of classification
hierarchies like biological taxonomies or simple library clas-
sification schemes like the dewey decimal system. In the tra-
versability section of this paper, balanced trees in their
completely unlabeled form were hailed as having good tra-
versal properties just as graphs. Here there is an entirely dif-
ferent point: a systematic labeling of a rooted tree as a
hierarchy can make it in addition a reasonably navigable
structure. Starting at the root of a biological taxonomy, one
can take Cat as a target and decide in turn, is it an Animal or a
Plant, is it a Vertebrate or Invertebrate, etc. and with enough
knowledge enough about cats, have a reasonable (though not
certain!) chance of navigating the way down to the Cat leaf
node in the structure. This is so familiar it seems trivial, but it
is not.

First let us understand why the hierarchy works in terms of
the vocabulary of this paper. There is well matched out-link
info at each node along the way: the Vertebrate label leads to
the to-set of vertebrates, etc. and the navigator is not misled.
Alternately, note that the Cat leaf-node has good residue
everywhere. This is most explicit in the Animal, Vertebrate,
Mammal,... nodes along the way from the root, but there is
also implicit good residue throughout the structure. At the
Maple node, in addition to the SugarMaple and NorwayMa-
ple children, neither of which match Cat, there is the upward
outlink returning towards the root, implicitly labeled “The
Rest”, which Cat does match, and which is good residue. This
superficial explanation has beneath it a number of critical
subtleties, general properties of the semantic labeling scheme
that rely on the richness of the notion of cat, the use of large
semantic categories, and the subtle web woven from of these
categories. These subtleties, all implied by the theory of view
navigation and efficient traversability not only help explain
why hierarchies work when they do, but also give hints how
other structures, like hypertext graphs of the world wide web,
might be made navigable.

To understand the navigation challenge a bit, consider the
how bad things could be.

The spectre of essential non-navigability. Cons ider tha t
Requirement VN2 implies that typically the minimum
description length of the to-sets must be small compared to
the size of those sets. In information theory that is equivalent
to requiring that the to-sets are not random. Thus,

•• example 7: non-navigable 1 - completely unrelated items.

A set of n completely unrelated things is intrinsically not
navigable. To see this consider an abstract alphabet of size
n. Any subset (e.g., a to-set) is information full, with no
structure or redundancy, and an individual set cannot be
specified except by enumeration. As a result it is not hard
to show there is no structure for organizing these n things,
whose outlinks can be labeled except with predominant

Furnas Effective View Navigability November 26, 1996 7

use of enumeration5, and so overall VN2 would be vio-
lated. ••

Such examples help in understanding navigability in the
abstract, and raise the point that insofar as the real world is
like such sets (is the web too random?), designing navigable
systems is going to be hard. Having set two extremes, the rea-
sonably navigable and the unnavigable, consider next a num-
ber of general deductions about view navigation.

Navigability requires representation of many sets. Every
link has an associated toset that must be labeled. This means
that the semantics of the domain must be quite rich to allow
all these sets to have appropriate characterizations (like,
RedThings, Cars, ThingsThatSleep). Similarly since a target
must have residue at every node, each target must belong to n
of these sets -- in stark contrast to the impoverished semantics
of the purely random non-navigable example.

Navigability requires an interlocking web of set
representations. Furthermore, these to-sets are richly inter-
dependent. Consider the local part of some structure shown in
Figure 7. Basically, the navigator should go to y to get to the

targets available from y. In other words the to-set, A, out of x ,
is largely made up of the to-sets B and C out of neighboring y.
(The exceptions, which are few in many structures, are those
targets with essentially an equally good path from x and y.)
This indicates that a highly constrained interlocking web of
tosets and corresponding semantics and labels must be
woven. In a hierarchy the to-sets moving from the root form
successive partitions and view navigability is obtained by
labeling those links with category labels that semantically
carve up the sets correspondingly. Animals leads, not to
“BrownThings” and “LargeThings” but to Vertebrates and
Invertebrates -- a conceptual partition the navigator can
decode mirroring an actual partition in the toset. Other struc-
tures do not often admit such nice partitioning semantics. It is
unclear what other structures have to-sets and webs of seman-
tic labelings that can be made to mirror each other.

Residue as a shared resource. Since ubiquitous enumera-
tion is not feasible, each target does not get its own explicit
listing in outlink-info everywhere. It follows that in some
sense, targets must typically share residue. The few bits of
outlink-info are a scarce resource whose global distribution
must be carefully structured, and not left to grow willy-nilly.
To see this consider putting a new page up on the web. In the-
ory, for strong navigability, every other node in the net must
suddenly have good residue for this new page! Note how
cleverly this can be handled in a carefully crafted hierarchy.

5 Technically, use of enumeration must dominate but need not
be ubiquitous. Some equivalent of the short label “the rest” can
be used for some links, but this can be shown not to rescue the
situation.

x
A

C

B
y

Figure 7. Two adjacent nodes, x and y, in a structure.
The to-sets associated with each outlink are
labeled in upper case.

All the many vertebrates share the short Vertebrate label as
residue. Global distribution is maintained by the careful
placement of new items: put a new vertebrate in the right
branch of the tree, and it shares the existing good residue. It is
probably no accident that the emerging large navigable sub-
structures over the web, e.g. Yahoo!, arise in a carefully
crafted hierarchical overlay with careful administrative super-
vision attending to the global distribution of this scare residue
resource.

Similarity-based navigation. One interesting class of naviga-
ble structures makes use of similarity both to organize the
structure and run the navigator. Objects are at nodes, and
there is some notion of similarity between objects. The out-
link-info of a link simply indicates the object at other end of
link. The navigator can compute the similarity between
objects, and chooses the outlink whose associated object is
most similar to its ultimate target, in this way hill-climbing up
a similarity gradient until the target is reached. One might
navigate through color space in this way, moving always
towards the neighboring color that is most similar to the tar-
get. Or one might try to navigate through the WWW by
choosing an adjacent page that seems most like what one is
pursuing (this would be likely to fail in general).

Similarity based navigation requires that nodes for similar
objects be pretty closely linked in the structure, but that is not
sufficient. There can be sets of things which have differential
similarity (not completely unrelated as in the non-navigable
example 6), and which can be linked to reflect that similarity
perfectly, but which are still fundamentally non-navigable,
essentially because all similarity is purely local, and so there
is no good-residue of things far away.

•• example 8: non-navigable set 2 - locally related structure.

This example concerns sets with arbitrary similarity struc-
ture but only local semantics, and that are hence non-nav-
igable.Take any graph of interest, for example the line
graph below. Take an alphabet as large as the number of
links in the graph, and randomly assign the letters to the
links. Now make “objects” at the nodes that are collec-
tions of the letters on the adjacent links:

Despite the fact that “similar” objects are adjacent in this
organization, there is no way to know how to get from,
say, LG to anything other than its immediate neighbors:
There is no good-residue of things far away ••

This example might be a fair approximation to the WWW --
pages might indeed be similar, or at least closely related, to
their neighbors, yet it is in general a matter of relatively
small, purely local features, and cannot support navigation.

Weaker models of navigability. Suppose we were to relax
strong navigability, for example abandoning the need for
every target to have residue at the current node. Even then
resource constraints dictate that it be possible to explore in a
small amount of time and find appropriate good residue.This
suggests that this relaxation will not dramatically alter the
general conclusions. Imagine that you could sit at a node and
send out a pack of seeing-eye bloodhounds looking for scent
at each step. This really amounts to just changing the viewing

J P B X L G V M T N S

J JP PB BX XL LG GV VM MT TN NS S

Furnas Effective View Navigability November 26, 1996 8

graph, including the sphere that the bloodhounds can see
(smell?) into the “viewed” neighbors. The constraints on how
many hounds and how long they can explore basically
remains a constraint on outdegree in the revised graph.

Combining EVT + VN = Effective View Navigability (EVN)

If we want an information structure that is both efficiently tra-
versable, and is strongly view navigable, then both the
mechanical constraints of EVT on diameter and outdegree
and the residue constraints of VN must hold. In this section
we make some informal observations about how the two sets
of constraints interact.

Large scale semantics dominate. Since by assumption
everything can be reached from a given node, the union of the
to-sets at each node form the whole set of n items in the struc-
ture. If there are v links leaving the node, the average size of
the to-set is n/v. If the structure satisfies EVT2, then v is small
compared to n, so the average to-set is quite large.

The significance of this is that VN1 requires that outlink-info
faithfully represent these large to-sets. If we assume the rep-
resentations are related to the semantics of objects, and that
representations of large sets are in some sense high level
semantics, it follows that high level semantics play a domi-
nant role in navigable structures. In a hierarchy this is seen in
both the broad category labels like Animal and Plant, and in
the curious “the rest” labels. The latter can be used in any
structure, but are quite constrained (e.g., they can only be
used for one outlink per node), so there is considerable stress
on more meaningful coarse-grain semantics. So if for exam-
ple the natural semantics of a domain mostly allow the speci-
fication of small sets, one might imagine intrinsic trouble for
navigation. (Note that Example 8 has this problem.)

Carving up the world efficiently. Earlier it was noted that the
to-sets of a structure form a kind of overlapping mosaic
which, by VN1 must be mirrored in the outlink-info. Enforc-
ing the diameter requirement of EVT2 means the neighboring
to-sets have to differ more dramatically. Consider by contrast
the to-sets of the line graph, a graph with bad diameter. There
the to-sets change very slowly as one moves along, with only
one item being eliminated at a time. It is possible to show (see
[3]) that under EVT2 the overlap pattern of to-sets must be
able to whittle down the space of alternatives in a small num-
ber of intersections. The efficiency of binary partitioning is
what makes a balanced binary tree satisfy EVT2, but a very
unbalanced one not. Correspondingly an efficiently view nav-
igable hierarchy has semantics that partition into equal size
sets, yielding navigation by fast binary search. More gener-
ally, whatever structure, the semantics of the domain must
carve it up efficiently.

Summary and Discussion

The goal of the work presented here has been to gain under-
standing of view navigation, with the basic premise that scale
issues are critical. The simple mechanics of traversal require
design of the logical structure and its viewing strategy so as to
make efficient uses of time and space, by coercing things into
known EVT structures, adding long distance links, or gluing
on navigational backbones. Navigation proper requires that
all possible targets have good residue throughout the struc-

ture. Equivalently, labeling must reflect a link’s to-set, not just
the neighboring node. This requires the rich semantic repre-
sentation of a web of interlocking sets, many of them large,
that efficiently carve up the contents of the space.

Together these considerations help to understand reasons why
some information navigation schemes are,

bad: the web in general (bad residue, diameter), simple
scrolling lists (bad diameter)

mixed: geometric zoom (good diameter, poor residue),

good: semantic zoom (better residue), 3D(shorter paths),
fisheyes (even shorter paths), balanced rooted trees (short
paths and possible simple semantics)

The problem of global residue distribution is very difficult.
The taxonomies implemented in rooted trees are about the
best we have so far, but even they are hard to design and use
for all purposes. New structures should be explored (e.g.,
hypercubes, DAG’s, multitrees), but one might also consider
hybrid strategies to overcome the limits of pure navigation,
including synergies between query and navigation. For exam-
ple, global navigability may not be achievable, but local navi-
gability may be - e.g., structures where residue is distributed
reasonably only within a limited radius of a target. Then if
there is some other way to get to the right neighborhood (e.g.,
as the result of an query), it may be possible to navigate the
rest of the way. The result is query initiated browsing, an
emerging paradigm on the web. Alternatively, one might ease
the residue problem by allowing dynamic outlink-info, for
example relabeling outlinks by the result of an ad-hoc query
of the structure.

Acknowledgments. This work was supported in part by
ARPA grant N66001-94-C-6039.

REFERENCES
1. Bederson, B. B. and Hollan, J. D., PAD++: zooming graphi-

cal interface for exploring alternate interface physics. In
Proceedings of ACM UIST’94, (Marina Del Ray, CA, 1994),
ACM Press, pp 17-26.

2. Card, S. K., Pirolli, P., and Mackinlay, J. D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Pro-
ceedings of CHI’94 Human Factors in Computing Systems
(Boston, MA, April 1994), ACM press, pp. 238-244.

3. Furnas, G.W., Effectively View-Navigable Structures. Paper
presented at the 1995 Human Computer Interaction Consor-
tium Workshop (HCIC95), Snow Mountain Ranch, Colo-
rado Feb 17, 1995. Manuscript available at http://
http2.si.umich.edu/~furnas/POSTSCRIPTS/
EVN.HCIC95.workshop.paper.ps

4. Furnas, G. W., and Bederson, B., Space-Scale Diagrams:
Understanding Multiscale Interfaces. In Human Factors in
Computing Systems, CHI’95 Conference Proceedings
(ACM), Denver, Colorado, May 8-11, 1995, 234-201.

5. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface. In Proceedings of ACM SigGraph `93
(Anaheim, CA), 1993, pp. 57-64.

6. Robertson, G. G., Mackinlay, J.D., and Card, S.K., Cone
trees: animated 3D visualizations of hierarchical informa-
tion. CHI’91 Proceedings, 1991, 189-194.

ABSTRACT

In view navigation a user moves about an information struc-
ture by selecting something in the current view of the struc-
ture. This paper explores the implications of rudimentary
requirements for effective view navigation, namely that,
despite the vastness of an information structure, the views
must be small, moving around must not take too many steps
and the route to any target be must be discoverable. The
analyses help rationalize existing practice, give insight into
the difficulties, and suggest strategies for design.

KEYWORDS: Information navigation, Direct Walk, large
information structures, hypertext, searching, browsing

INTRODUCTION

When the World Wide Web (WWW) first gained popularity,
those who used it were impressed by the richness of the con-
tent accessible simply by wandering around and clicking
things seen on the screen. Soon after, struck by the near
impossibility of finding anything specific, global navigation
was largely abandoned in place of search engines. What went
wrong with pure navigation?

This work presented here seeks theoretical insight into, in
part, the problems with pure navigational access on the web.
More generally, it explores some basic issues in moving
around and finding things in various information structures,
be they webs, trees, tables, or even simple lists. The focus is
particularly on issues that arise as such structures get very
large, where interaction is seriously limited by the available
resources of space (e.g., screen real estate) and time (e.g.,
number of interactions required to get somewhere): How do
these limits in turn puts constraints on what kinds of informa-
tion structures and display strategies lead to effective naviga-
tion? How have these constraints affected practice, and how
might we live with them in future design?

We will be considering systems with static structure over
which users must navigate to find things, e.g., lists, trees,

planes, grids, graphs. The structure is assumed to contain ele-
ments of some sort (items in a list, nodes in a hypertext
graph) organized in some logical structure. We assume that
the interface given to the user is navigational, i.e., the user at
any given time is “at” some node in the structure with a view
specific to that node (e.g., of the local neighborhood), and has
the ability to move next to anything in that current view. For
example for a list the user might have window centered on a
particular current item. A click on an item at the bottom of
the window would cause that item to scroll up and become
the new “current” item in the middle of the window. In a
hypertext web, a user could follow one of the visible links in
the current hypertext page.

In this paper we will first examine view traversal, the under-
lying iterative process of viewing, selecting something seen,
and moving to it, to form a path through the structure.1 Then
we will look at the more complex view navigation where in
addition the selections try to be informed and reasonable in
the pursuit of a desired target. Thus view traversal ignores
how to decide where to go next, for view navigation that is
central.The goal throughout is to understand the implications
of resource problems arising as structures get very large.

EFFICIENT VIEW TRAVERSIBILITY

What are the basic requirements for efficient view traversal?
I.e., what are the minimal capabilities for moving around by
viewing, selecting and moving which, if not met, will make
large information structures, those encompassing thousands,
even billions of items, impractical for navigation.

Definitions and Fundamental Requirements

We assume that the elements of the information structure (the
items in a list, nodes in a hypertext graph, etc.) are organized
in a logical structure that can be characterized by a logical
structure graph, connecting elements to their logical neigh-
bors as dictated by the semantics of the domain.2 For an
ordered list this would just be line graph, with each item con-
nected to the items which proceed and follow it. For a hyper-

1 This is the style of interaction was called a direct walk by
Card, et al [2]. We choose the terminology “view traversal”
here to make explicit the view aspect, since we wish to study
the use of spatial resources needed for viewing.
2 More complete definitions, and proofs of most of the mate-
rial in this paper can be found in [3]

Effective View Navigation

George W. Furnas
School of Information
University of Michigan

(313) 763-0076
furnas@umich.edu

To appear in Human Factors in Computing Systems, CHI’97 Conference Proceedings (ACM), Atlanta GA, March 22-27, 1997.

Furnas Effective View Navigability November 26, 1996 2

text the logical structure graph would be some sort of web.
We will assume the logical graph is finite.

We capture a basic property of the interface to the informa-
tion structure in terms of the notion of a viewing graph (actu-
ally a directed graph) defined as follows. It has a node for
each node in the logical structure. A directed link goes from a
node i to node j if the view from i includes j (and hence it is
possible to view-traverse from i to j). Note that the viewing
graph might be identical to the logical graph, but need not be.
For example, it is permissible to include in the current view,
points that are far away in the logical structure (e.g., vari-
ously, the root, home page, top of the list).

The conceptual introduction of the viewing graph allows us
to translate many discussion of views and viewing strategies
into discussions of the nature of the viewing graph. Here, in
particular, we are interested in classes of viewing-graphs that
allow the efficient use of space and time resources during
view traversal, even as the structures get very large: Users
have a comparatively small amount of screen real estate and a
finite amount of time for their interactions. For view traversal
these limitations translate correspondingly into two require-
ments on the viewing graph. First, if we assume the structure
to be huge, and the screen comparatively small, then the user
can only view a small subset of the structure from her current
location. In terms of the viewing graph this means, in some
reasonable sense,

Requirement EVT1 (small views). The number of
out-going links, or out-degree, of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

A second requirement reflects the interaction time limitation.
Even though the structure is huge, we would like it to take
only a reasonable number of steps to get from one place to
another. Thus (again in some reasonable sense) we need,

Requirement EVT2 (short paths). The distance (in
number of links) between pairs of nodes in the view-
ing graph must be “small” compared to the size of
the structure.

We will say that a viewing graph is Efficiently View Travers-
able (EVT) insofar as it meets both of these requirements.
There are many “reasonable senses” one might consider for
formalizing these requirements. For analysis here we will use
a worst case characterization. The Maximal Out-Degree
(MOD, or largest out-degree of any node) will characterize
how well EVT1 is met (smaller values are better), and the
Diameter (DIA, or longest connecting path required any-
where) will characterize how well EVT2 is met (again,
smaller is better). Summarized as an ordered pair,

EVT(G) = (MOD(G), DIA(G)),

we can use them to compare the traversability of various
classes of view-traversable information structures.

•• example 1: a scrolling list

Consider an ordered list, sketched in Figure 1(a). Its logi-
cal structure connects each item with the item just before
and just after it in the list. Thus the logical graph (b) is a

line graph. A standard viewer for a long list is a simple
scrolling window (c), which when centered on one line
(marked by the star), shows a number of lines on either
side. Thus a piece of the viewing graph, shown in (d), has
links going from the starred node to all the nearby nodes
that can be seen in the view as centered at that node. The
complete viewing graph would have this replicated for all
nodes in the logical graph.

This viewing graph satisfies the first requirement, EVT1,
nicely: Regardless of the length of the list, the view size,
and hence the out-degree of the viewing graph, is always
the small fixed size of the viewing window. The diameter
requirement of EVT2, however, is problematic. Pure view
traversal for a scrolling list happens by clicking on an
item in the viewing window, e.g., the bottom line. That
item would then appear in the center of the screen, and
repeated clicks could move all the way through the list.
As seen in (e), moving from one end of the list to the
other requires a number of steps linear in the size of the
list. This means that overall

EVT(SCROLLING-LISTn) = (O(1), O(n)), 3

and, because of the diameter term, a scrolling list is not
very Effectively View Traversable. This formalizes the
intuition that while individual views in a scrolling list
interface are reasonable, unaided scrolling is a poor inter-
action technique for even moderate sized lists of a few
hundred items (where scrollbars were a needed inven-
tion), and impossible for huge ones (e.g., billions, where
even scroll bars will fail). ••

DESIGN FOR EVT

Fortunately from a design standpoint, things need not be so
bad. There are simple viewing structures that are highly EVT,
and there are ways to fix structures that are not.

3 O(1) means basically “in the limit proportional to 1”, i.e.,
constant -- an excellent score. O(n) means “in the limit propor-
tional to n”-- a pretty poor score. O(log n) would mean “in the
limit proportional to log n”-- quite respectable.

Figure 1. (a) Schematic of an ordered list, (b) logical
graph of the list, (c) local window view of the list, (d)
associated part of viewing graph, showing that out
degree is constant, (e) sequence of traversal steps
showing the diameter of viewing graph is O(n).

(a) (b) (c) (d) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

Furnas Effective View Navigability November 26, 1996 3

Some Efficiently View Traversable Structures

We begin by considering example structures that have good
EVT performance, based on classes of graphs that have the
proper degree and diameter properties.

•• example 2: local viewing of a balanced tree.

Trees are commonly used to represent information, from
organizational hierarchies, to library classification sys-
tems, to menu systems. An idealized version (a balanced
regular tree) appears in Figure 2(a). A typical tree viewing
strategy makes visible from a given node its parent and its
children (b), i.e., the viewing structure essentially mirrors
the logical structure. Here, regardless of the total size, n,
of the tree, the outdegree of each node in the viewing
graph is a constant, one more than the branching factor,
and we have nicely satisfied EVT1. The diameter of the
balanced tree is also well behaved, being twice the depth
of the tree, which is logarithmic in the size of the tree, and
hence O(log n). Thus,

EVT(BALANCED-REGULAR-TREEn) = (O(1), O(log n)) ••

•• example 3: local viewing of a hypercube

Consider next a k-dimensional hypercube (not pictured)
that might be used to represent the structure of a factori-
ally designed set of objects, where there are k binary fac-
tors (cf. a simple but complete relational database with k
binary attributes), e.g., a set of objects that are either big
or small, red or green, round or square, in all various com-
binations. A navigational interface to such a data structure
could give, from a node corresponding to one combina-
tion of attributes, views simply showing its neighbors in
the hypercube, i.e., combinations differing in only one
attribute. Whether this would be a good interface for other
reasons or not, a simple analysis reveals that at least it
would have very reasonable EVT behavior:

EVT(HYPERCUBEn) = (O(log n), O(log n)). ••

The conclusion of examples 2 and 3 is simply that, if one
can coerce the domain into either a reasonably balanced
and regular tree, or into a hypercube, view traversal will
be quite efficient. Small views and short paths suffice
even for very large structures. Knowing a large arsenal of
highly EVT structures presumably will be increasingly
useful as we have to deal with larger and larger informa-
tion worlds.

Figure 2. An example of an Efficiently View Traversable
Structure (a) logical graph of a balanced tree, (b) in
gray, part of the viewing graph for giving local views
of the tree showing the outdegree is constant, (c) a
path showing the diameter to be O(log(n)).

(a) (b)

(c)

Fixing Non-EVT Structures
What can one do with an information structure whose logical
structure does not directly translate into a viewing graph that
is EVT? The value of separating out the viewing graph from
the logical graph is that while the domain semantics may dic-
tate the logical graph, the interface designer can often craft
the viewing graph. Thus we next consider a number of strate-
gies for improving EVT behavior by the design of good view-
ing graphs. We illustrate by showing several ways to improve
the view navigation of lists, then mentioning some general
results and observations.

•• example 4: fixing the list (version 1) - more dimensions

One strategy for improving the View Traversability of a
list is to fold it up into two dimensions, making a multi-
column list (Figure 3).The logical graph is the same (a),
but by folding as in (b) one can give views that show two
dimensional local neighborhoods (c). These local neigh-
borhoods are of constant size, regardless of the size of the
list, so the outdegree of the viewing graph is still constant,
but the diameter of the graph is now sublinear, being
related to the square-root of the length of the list, so we
have

EVT(MULTI-COLUMN-LISTn) = (O(1), O(sqrt(n)).

This square-root reduction in diameter presumably
explains why it is common practice to lay out lists of
moderate size in multiple columns (e.g., the “ls” com-
mand in UNIX or a page of the phone book). The advan-
tage is presumably that the eye (or viewing window) has
to move a much shorter distance to get from one part to
another.4One way to think about what has happened is

4 Some really long lists, for example a metropolitan phone
book, are folded up in 3-D: multiple columns per page, and
pages stacked one upon another. We take this format for
granted, but imagine how far one would have to move from the
beginning to the end of the list if one only had 1D or 2D in
which to place all those numbers! A similar analysis explains
how Cone Trees [6] provide better traversability using 3-D.

Figure 3. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) the list is folded up in 2-D (c)
part of the viewing graph showing the 2-D view-neigh-
bors of Node6 in the list: out degree is O(1), (d) diame-
ter of viewing graph is now reduced to O(sqrt(n)). (e)
Unfolding the list, some view-neighbors of Node6 are
far away, causing a decrease in diameter.

(a) (d)

(c)(b)

(e)

Furnas Effective View Navigability November 26, 1996 4

illustrated in Figure 3 (e), where the part of the viewing
graph in (c) is shown in the unfolded version of the list.••

The critical thing to note in the example is that some of the
links of the viewing graph point to nodes that are not local in
the logical structure of the graph. This is a very general class
of strategies for decreasing the diameter of the viewing graph,
further illustrated in the next example.

•• example 5: fixing the list (version 2) - fisheye sampling

It is possible to use non-local viewing links to improve
even further the view-traversability of a list. Figure 3
shows a viewing strategy where the nodes included in a
view are spaced in a geometric series. That is, from the
current node, one can see the nodes that are at a distance
1, 2, 4, 8, 16,... away in the list. This sampling pattern
might be called a kind of fisheye sampling, in that it
shows the local part of the list in most detail, and further
regions in successively less detail.

This strategy results in a view size that is logarithmic in
the size of the list. Moving from one node to another ends
up to be a process much like a binary search, and gives a
diameter of the viewing graph that is also logarithmic.
Thus

EVT(FISHEYE-SAMPLED-LISTn) = (O(log n), O(log n)).

Note that variations of this fisheye sampling strategy can
yield good EVT performance for many other structures,
including 2D and 3D grids. ••

The lesson from examples 4 and 5 is that even if the logical
structure is not EVT, it is possible to make the viewing struc-
ture EVT by adding long-distance links.

•• example 6: fixing the list (version 3) - tree augmentation

In addition to just adding links, one can also adding nodes
to the viewing graph that are not in the original logical
structure. This allows various shortcut paths to share
structure, and reduce the total number of links needed,

Figure 4. Fixing the list viewer. (a) logical graph of the
ordered list again, (b) part of viewing graph of fish-
eye sampled list, showing that out degree is
O(log(n)), (c) sample actually selected from list (d)
view actually given, of size O(log(n)), (e) illustration
of how diameter of viewing graph is now O(log(n)).

(a) (b) (e)

apple

banana

carrot

dill

endive

fennel

ginger

herbs

indigo

jicama

kale

lemon

mango

nutmeg

orange

plum

quince

apple...

...endive...

ginger

herbs

indigo

jicama

kale...

...mango...

...quince

(d)(c)
and hence the general outdegree. For example, one can
glue a structure known to be EVT onto a given non-EVT
structure. In Figure 2 a tree is glued onto the side of the
list and traversal is predominantly through the tree. Thus
in Figure 2, new nodes are introduced (O(n)), and viewing
links are introduced in the form of a tree. Since the outde-
grees everywhere are of size ≤3, and logarithmic length
paths now exist between the original nodes by going
through the tree, we get

EVT(TREE-AUGMENTED-LISTn) = (O(1), O(log n)). ••

Although there is not enough space here for details, we note
in passing that an EVT analysis of zoomable interfaces is
valuable in clarifying one of their dramatic advantages -- the
diameter of the space is reduced from O(sqrt(n)) to O(log n).
[3][4]

Remarks about Efficient View Traversability

Efficient View Traversability is a minimal essential condition
for view navigation of very large information structures. In a
straight forward way it helps to explain why simple list view-
ers do not scale, why phone books and cone-trees exploit 3D,
why trees and fisheyes and zooms all help.

EVT analysis also suggests strategies for design. One can try
to coerce an information world into a representation which
naturally supports EVT1 and EVT2, e.g., the common prac-
tice of trying to represent things in trees. Alternatively one
can fix a poor structure by adding long-distance links, or add-
ing on another complete structure. Note that in general, the
impact of selectively adding links can be much greater on
decreasing diameter than on increasing view sizes, to net pos-
itive effect. One result of this simple insight is a general ver-
sion of the tree augmentation strategy. In general terms,
gluing any good EVT graph onto a bad one will make a new
structure as good as the good graph in diameter, and not much
worse than the worse of the two in outdegree. I.e., always
remember the strategy of putting a traversable infrastructure
on an otherwise unruly information structure!

Efficiently view traversable structures have an additional
interesting property, “jump and show”: an arbitrary non-nav-
igational jump (e.g., as the result of a query search) from one
location to another has a corresponding view traversal version
with a small rendering: a small number of steps each requir-

Figure 5. Improving EVT of a list by adding a tree.
The resulting structure has constant viewsize but
logarithmic diameter

(a) (c)(b)

Furnas Effective View Navigability November 26, 1996 5

ing a small view will suffice. Thus a short movie or small
map will show the user how they could have done a direct
walk from their old location to their new one. A similar con-
cept was explored for continuous Pan&Zoom in [4].

NAVIGABILITY

Efficient view traversability is not enough: it does little good
if a short traversal path to a destination exists but that path is
unfindable. It must be possible somehow to read the structure
to find good paths; the structure must be view navigable.

For analysis we imagine the simple case of some navigator
process searching for a particular target, proceeding by com-
paring it to information associated with each outlink in its
current view (outlink-info, e.g. a label). From this compari-
son, it decides which link to follow next.

In this paper we will explore an idealization, strong naviga-
bility , requiring that the structure and its outlink-info allow
the navigator (1) to find the shortest path to the target (2)
without error and (3) in a history-less fashion (meaning it can
make the right choice at each step by looking only at what is
visible in the current node). We examine this case because it
is tractable, because it leads to suggestive results, and
because, as a desirable fantasy, its limits are worth under-
standing.

To understand when strong view navigation is possible, a few
definitions are needed. They are illustrated in Figure 6 .

Consider a navigator at some node seeking the shortest path
to a target. A given link is a defensible next step only for cer-

Figure 6 The outlink-info for link A-->i is an enumeration,
and for A-->n is a feature (a shaded circle). These are
both well matched. The link info for links to the right of
A is not-well matched. The residue of f at A is the
shaded-circle label. The residue of e at A is its appear-
ance in the enumeration label. The node g has residue
in the upper right enumeration label at A, but it is not
good residue. The node h has no residue at A.

Link A-->n A-->u A-->i A-->d

to-set {c,f,k,p,r,s} {c,f,u,p,s} {e,i,m,t} {b,d,g,h,j,l,o,q,s}

outlink-info

inferred to-set <c,f,k,p,r,s> <g,x,y,z> <e,i,m,t> <?>

g x y z e i m t

f
p

c

t
h

r

u

i

o

g

j

k n

l b

e

s

m

A

d

q

e i m t

g x y z

tain targets -- the link must be on a shortest path to those tar-
gets. We call this set of targets the to-set of the link, basically
the targets the link efficiently “leads to”. If the navigator’s tar-
get is in the to-set of a link, it can follow that link.

We assume, however, that the navigator does not know the to-
set of a link directly; it is a global property of the structure of
the graph. The navigator only has access to the locally avail-
able outlink-info which it will match against its target to
decide what link to take. We define the inferred-to-set of a
link to be the set of all target nodes that the associated out-
link-info would seem to indicate is down that link (the targets
that would match the outlink-info), which could be a different
set entirely.

In fact, we say that the outlink-info of a link is not misleading
with respect to a target when the target being in the inferred-
to-set implies it is in the true to-set, or in other words when
the outlink-info does not mislead the navigator to take a step
it should not take. (Note that the converse is not being
required here; the outlink-info need not be complete, and may
underspecify its true-to-set.)

Next we say that the outlink-info of node as a whole is said to
be well-matched with respect to a target if none of its outlink-
info is misleading with respect to that target, and if the target
is in the inferred-to-set of at least one outlink. Further we say
that the outlink information at a node is simply well-matched
iff it is well-matched with respect to all possible targets.

We now state the following straightforward proposition:

Proposition (navigability): The navigator is guaran-
teed to always find shortest paths to targets iff the
outlink-info is everywhere well-matched.

Hence, the following requirement for a strongly navigable
world:

Requirement VN1(navigability): The outlink-info
must be everywhere well matched.

The critical observation in all this for designing navigable
information systems is that, to be navigable, the outlink-info
of a link must in some sense describe not just the next node,
but the whole to-set. This is a problem in many hypertext sys-
tems, including the WWW: Their link-labels indicate adja-
cent nodes and do not tell what else lies beyond, in the whole
to-set. In a sense, for navigation purposes, “highway signage”
might be a better metaphor for good outlink-info than “label”.
The information has to convey what is off in that direction,
off along that route, rather than just where it will get to next.
As we will see shortly, this is a difficult requirement in prac-
tice.

First, however, we turn the analysis on its head. The perspec-
tive so far has been in terms of how the world looks to a navi-
gator that successively follows outlinks using outlink-info
until it gets to its target: the navigator wants a world in which
it can find its target. Now let us think about the situation from
the other side -- how the world looks from the perspective of
a target, with the assumption that targets want a world in
which they can be found. This complementary perspective
brings up the important notion of residue or scent .The resi-

Furnas Effective View Navigability November 26, 1996 6

due or scent of a target is the remote indication of that target
in outlink-info throughout the information structure. More
precisely, a target has residue at a link if the associated out-
link-info would lead the navigator to take that link in pursuit
of the given target, i.e., to put the target in the inferred-to-set
of the link. If the navigator was not being mislead, i.e, the
outlink-info was well-matched for that target, then we say the
residue was good residue for the target.(Refer back to the
caption of Figure 6).

An alternate formulation of the Navigability proposition says
that in order to be findable by navigation from anywhere in
the structure, a target must have good residue at every node.
I.e., in order to be able to find a target, the navigator must
have some scent, some residue, of it, no matter where the
navigator is, to begin chasing down its trail.

Furthermore, if every target is to be findable, we need the fol-
lowing requirement, really an alternate statement of VN1:

Requirement VN1a (residue distribution): Every
node must have good residue at every other node.

This is a daunting challenge. There are numerous examples
of real world information structures without good residue dis-
tribution. Consider the WWW. You want to find some target
from your current location, but do not have a clue of how to
navigate there because your target has no good-residue here.
There is no trace of it in the current view. This is a fundamen-
tal reason why the WWW is not navigable. For another
example consider pan&zoom interfaces to information
worlds, like PAD[5]. If you zoom out too far, your target can
become unrecognizable, or disappear entirely leaving no resi-
due, and you cannot navigate back to it. This has lead to a
notion of semantic zooming [1] [5] , where the appearance of
an object changes as its size changes so that it stays visually
comprehensible, or at least visible -- essentially a design
move to preserve good residue.

The VN1 requirements are difficult basically because of the
following scaling constraint.

Requirement VN2. Outlink-info must be “small”.

To understand this requirement and its impact, consider that
one way to get perfect matching or equivalently perfect glo-
bal residue distributions would be to have an exhaustive list,
or enumeration, of the to-set as the outlink-info for each link
(i.e., each link is labeled by listing the complete set of things
it “leads to”, as in the label of the lower left outlink from node
A in). Thus collectively between all the outlinks at each node
there is a full listing of the structure, and such a complete
union list must exist at each node. This “enumeration” strat-
egy is presumably not feasible for view navigation since,
being O(n2), it does not scale well. Thus, the outlink-info
must somehow accurately specify the corresponding to-set in
some way more efficient than enumeration, using more con-
ceptually complex representations, requiring semantic
notions like attributes (Red) and abstraction (LivingThings).

The issues underlying good residue, its representation and
distribution, are intriguing and complex. Only a few modest
observations will be listed here.

Remarks on View Navigability

Trees revisited. One of the most familiar navigable informa-
tion structures is a rooted tree in the form of classification
hierarchies like biological taxonomies or simple library clas-
sification schemes like the dewey decimal system. In the tra-
versability section of this paper, balanced trees in their
completely unlabeled form were hailed as having good tra-
versal properties just as graphs. Here there is an entirely dif-
ferent point: a systematic labeling of a rooted tree as a
hierarchy can make it in addition a reasonably navigable
structure. Starting at the root of a biological taxonomy, one
can take Cat as a target and decide in turn, is it an Animal or a
Plant, is it a Vertebrate or Invertebrate, etc. and with enough
knowledge enough about cats, have a reasonable (though not
certain!) chance of navigating the way down to the Cat leaf
node in the structure. This is so familiar it seems trivial, but it
is not.

First let us understand why the hierarchy works in terms of
the vocabulary of this paper. There is well matched out-link
info at each node along the way: the Vertebrate label leads to
the to-set of vertebrates, etc. and the navigator is not misled.
Alternately, note that the Cat leaf-node has good residue
everywhere. This is most explicit in the Animal, Vertebrate,
Mammal,... nodes along the way from the root, but there is
also implicit good residue throughout the structure. At the
Maple node, in addition to the SugarMaple and NorwayMa-
ple children, neither of which match Cat, there is the upward
outlink returning towards the root, implicitly labeled “The
Rest”, which Cat does match, and which is good residue. This
superficial explanation has beneath it a number of critical
subtleties, general properties of the semantic labeling scheme
that rely on the richness of the notion of cat, the use of large
semantic categories, and the subtle web woven from of these
categories. These subtleties, all implied by the theory of view
navigation and efficient traversability not only help explain
why hierarchies work when they do, but also give hints how
other structures, like hypertext graphs of the world wide web,
might be made navigable.

To understand the navigation challenge a bit, consider the
how bad things could be.

The spectre of essential non-navigability. Cons ider tha t
Requirement VN2 implies that typically the minimum
description length of the to-sets must be small compared to
the size of those sets. In information theory that is equivalent
to requiring that the to-sets are not random. Thus,

•• example 7: non-navigable 1 - completely unrelated items.

A set of n completely unrelated things is intrinsically not
navigable. To see this consider an abstract alphabet of size
n. Any subset (e.g., a to-set) is information full, with no
structure or redundancy, and an individual set cannot be
specified except by enumeration. As a result it is not hard
to show there is no structure for organizing these n things,
whose outlinks can be labeled except with predominant

Furnas Effective View Navigability November 26, 1996 7

use of enumeration5, and so overall VN2 would be vio-
lated. ••

Such examples help in understanding navigability in the
abstract, and raise the point that insofar as the real world is
like such sets (is the web too random?), designing navigable
systems is going to be hard. Having set two extremes, the rea-
sonably navigable and the unnavigable, consider next a num-
ber of general deductions about view navigation.

Navigability requires representation of many sets. Every
link has an associated toset that must be labeled. This means
that the semantics of the domain must be quite rich to allow
all these sets to have appropriate characterizations (like,
RedThings, Cars, ThingsThatSleep). Similarly since a target
must have residue at every node, each target must belong to n
of these sets -- in stark contrast to the impoverished semantics
of the purely random non-navigable example.

Navigability requires an interlocking web of set
representations. Furthermore, these to-sets are richly inter-
dependent. Consider the local part of some structure shown in
Figure 7. Basically, the navigator should go to y to get to the

targets available from y. In other words the to-set, A, out of x ,
is largely made up of the to-sets B and C out of neighboring y.
(The exceptions, which are few in many structures, are those
targets with essentially an equally good path from x and y.)
This indicates that a highly constrained interlocking web of
tosets and corresponding semantics and labels must be
woven. In a hierarchy the to-sets moving from the root form
successive partitions and view navigability is obtained by
labeling those links with category labels that semantically
carve up the sets correspondingly. Animals leads, not to
“BrownThings” and “LargeThings” but to Vertebrates and
Invertebrates -- a conceptual partition the navigator can
decode mirroring an actual partition in the toset. Other struc-
tures do not often admit such nice partitioning semantics. It is
unclear what other structures have to-sets and webs of seman-
tic labelings that can be made to mirror each other.

Residue as a shared resource. Since ubiquitous enumera-
tion is not feasible, each target does not get its own explicit
listing in outlink-info everywhere. It follows that in some
sense, targets must typically share residue. The few bits of
outlink-info are a scarce resource whose global distribution
must be carefully structured, and not left to grow willy-nilly.
To see this consider putting a new page up on the web. In the-
ory, for strong navigability, every other node in the net must
suddenly have good residue for this new page! Note how
cleverly this can be handled in a carefully crafted hierarchy.

5 Technically, use of enumeration must dominate but need not
be ubiquitous. Some equivalent of the short label “the rest” can
be used for some links, but this can be shown not to rescue the
situation.

x
A

C

B
y

Figure 7. Two adjacent nodes, x and y, in a structure.
The to-sets associated with each outlink are
labeled in upper case.

All the many vertebrates share the short Vertebrate label as
residue. Global distribution is maintained by the careful
placement of new items: put a new vertebrate in the right
branch of the tree, and it shares the existing good residue. It is
probably no accident that the emerging large navigable sub-
structures over the web, e.g. Yahoo!, arise in a carefully
crafted hierarchical overlay with careful administrative super-
vision attending to the global distribution of this scare residue
resource.

Similarity-based navigation. One interesting class of naviga-
ble structures makes use of similarity both to organize the
structure and run the navigator. Objects are at nodes, and
there is some notion of similarity between objects. The out-
link-info of a link simply indicates the object at other end of
link. The navigator can compute the similarity between
objects, and chooses the outlink whose associated object is
most similar to its ultimate target, in this way hill-climbing up
a similarity gradient until the target is reached. One might
navigate through color space in this way, moving always
towards the neighboring color that is most similar to the tar-
get. Or one might try to navigate through the WWW by
choosing an adjacent page that seems most like what one is
pursuing (this would be likely to fail in general).

Similarity based navigation requires that nodes for similar
objects be pretty closely linked in the structure, but that is not
sufficient. There can be sets of things which have differential
similarity (not completely unrelated as in the non-navigable
example 6), and which can be linked to reflect that similarity
perfectly, but which are still fundamentally non-navigable,
essentially because all similarity is purely local, and so there
is no good-residue of things far away.

•• example 8: non-navigable set 2 - locally related structure.

This example concerns sets with arbitrary similarity struc-
ture but only local semantics, and that are hence non-nav-
igable.Take any graph of interest, for example the line
graph below. Take an alphabet as large as the number of
links in the graph, and randomly assign the letters to the
links. Now make “objects” at the nodes that are collec-
tions of the letters on the adjacent links:

Despite the fact that “similar” objects are adjacent in this
organization, there is no way to know how to get from,
say, LG to anything other than its immediate neighbors:
There is no good-residue of things far away ••

This example might be a fair approximation to the WWW --
pages might indeed be similar, or at least closely related, to
their neighbors, yet it is in general a matter of relatively
small, purely local features, and cannot support navigation.

Weaker models of navigability. Suppose we were to relax
strong navigability, for example abandoning the need for
every target to have residue at the current node. Even then
resource constraints dictate that it be possible to explore in a
small amount of time and find appropriate good residue.This
suggests that this relaxation will not dramatically alter the
general conclusions. Imagine that you could sit at a node and
send out a pack of seeing-eye bloodhounds looking for scent
at each step. This really amounts to just changing the viewing

J P B X L G V M T N S

J JP PB BX XL LG GV VM MT TN NS S

Furnas Effective View Navigability November 26, 1996 8

graph, including the sphere that the bloodhounds can see
(smell?) into the “viewed” neighbors. The constraints on how
many hounds and how long they can explore basically
remains a constraint on outdegree in the revised graph.

Combining EVT + VN = Effective View Navigability (EVN)

If we want an information structure that is both efficiently tra-
versable, and is strongly view navigable, then both the
mechanical constraints of EVT on diameter and outdegree
and the residue constraints of VN must hold. In this section
we make some informal observations about how the two sets
of constraints interact.

Large scale semantics dominate. Since by assumption
everything can be reached from a given node, the union of the
to-sets at each node form the whole set of n items in the struc-
ture. If there are v links leaving the node, the average size of
the to-set is n/v. If the structure satisfies EVT2, then v is small
compared to n, so the average to-set is quite large.

The significance of this is that VN1 requires that outlink-info
faithfully represent these large to-sets. If we assume the rep-
resentations are related to the semantics of objects, and that
representations of large sets are in some sense high level
semantics, it follows that high level semantics play a domi-
nant role in navigable structures. In a hierarchy this is seen in
both the broad category labels like Animal and Plant, and in
the curious “the rest” labels. The latter can be used in any
structure, but are quite constrained (e.g., they can only be
used for one outlink per node), so there is considerable stress
on more meaningful coarse-grain semantics. So if for exam-
ple the natural semantics of a domain mostly allow the speci-
fication of small sets, one might imagine intrinsic trouble for
navigation. (Note that Example 8 has this problem.)

Carving up the world efficiently. Earlier it was noted that the
to-sets of a structure form a kind of overlapping mosaic
which, by VN1 must be mirrored in the outlink-info. Enforc-
ing the diameter requirement of EVT2 means the neighboring
to-sets have to differ more dramatically. Consider by contrast
the to-sets of the line graph, a graph with bad diameter. There
the to-sets change very slowly as one moves along, with only
one item being eliminated at a time. It is possible to show (see
[3]) that under EVT2 the overlap pattern of to-sets must be
able to whittle down the space of alternatives in a small num-
ber of intersections. The efficiency of binary partitioning is
what makes a balanced binary tree satisfy EVT2, but a very
unbalanced one not. Correspondingly an efficiently view nav-
igable hierarchy has semantics that partition into equal size
sets, yielding navigation by fast binary search. More gener-
ally, whatever structure, the semantics of the domain must
carve it up efficiently.

Summary and Discussion

The goal of the work presented here has been to gain under-
standing of view navigation, with the basic premise that scale
issues are critical. The simple mechanics of traversal require
design of the logical structure and its viewing strategy so as to
make efficient uses of time and space, by coercing things into
known EVT structures, adding long distance links, or gluing
on navigational backbones. Navigation proper requires that
all possible targets have good residue throughout the struc-

ture. Equivalently, labeling must reflect a link’s to-set, not just
the neighboring node. This requires the rich semantic repre-
sentation of a web of interlocking sets, many of them large,
that efficiently carve up the contents of the space.

Together these considerations help to understand reasons why
some information navigation schemes are,

bad: the web in general (bad residue, diameter), simple
scrolling lists (bad diameter)

mixed: geometric zoom (good diameter, poor residue),

good: semantic zoom (better residue), 3D(shorter paths),
fisheyes (even shorter paths), balanced rooted trees (short
paths and possible simple semantics)

The problem of global residue distribution is very difficult.
The taxonomies implemented in rooted trees are about the
best we have so far, but even they are hard to design and use
for all purposes. New structures should be explored (e.g.,
hypercubes, DAG’s, multitrees), but one might also consider
hybrid strategies to overcome the limits of pure navigation,
including synergies between query and navigation. For exam-
ple, global navigability may not be achievable, but local navi-
gability may be - e.g., structures where residue is distributed
reasonably only within a limited radius of a target. Then if
there is some other way to get to the right neighborhood (e.g.,
as the result of an query), it may be possible to navigate the
rest of the way. The result is query initiated browsing, an
emerging paradigm on the web. Alternatively, one might ease
the residue problem by allowing dynamic outlink-info, for
example relabeling outlinks by the result of an ad-hoc query
of the structure.

Acknowledgments. This work was supported in part by
ARPA grant N66001-94-C-6039.

REFERENCES
1. Bederson, B. B. and Hollan, J. D., PAD++: zooming graphi-

cal interface for exploring alternate interface physics. In
Proceedings of ACM UIST’94, (Marina Del Ray, CA, 1994),
ACM Press, pp 17-26.

2. Card, S. K., Pirolli, P., and Mackinlay, J. D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Pro-
ceedings of CHI’94 Human Factors in Computing Systems
(Boston, MA, April 1994), ACM press, pp. 238-244.

3. Furnas, G.W., Effectively View-Navigable Structures. Paper
presented at the 1995 Human Computer Interaction Consor-
tium Workshop (HCIC95), Snow Mountain Ranch, Colo-
rado Feb 17, 1995. Manuscript available at http://
http2.si.umich.edu/~furnas/POSTSCRIPTS/
EVN.HCIC95.workshop.paper.ps

4. Furnas, G. W., and Bederson, B., Space-Scale Diagrams:
Understanding Multiscale Interfaces. In Human Factors in
Computing Systems, CHI’95 Conference Proceedings
(ACM), Denver, Colorado, May 8-11, 1995, 234-201.

5. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface. In Proceedings of ACM SigGraph `93
(Anaheim, CA), 1993, pp. 57-64.

6. Robertson, G. G., Mackinlay, J.D., and Card, S.K., Cone
trees: animated 3D visualizations of hierarchical informa-
tion. CHI’91 Proceedings, 1991, 189-194.

