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Abstract

On most accounts of expertise, as agents increase their skill,
they are assumed to make fewer mistakes and to take fewer
redundant or backtracking actions. Contrary to such accounts,
in this paper we present data collected from people learning to
play the videogame Tetris which show that as skill increases,the
proportion of game actions that are later undone by backtrack-
ing also increases. Nevertheless, we also found that as game
skill increases, players speed up as predicted by the power law
of practice. We explain the observed increase in backtracking
as the result of an interactive search process in which agent-
internal and agent-external actions are interleaved, making the
cognitive computation more efficient (i.e., faster). We refer
to external actions which simplify an agent’s computation as
epistemic actions.

Introduction
In this paper, we present experimental data which runs counter
to an assumption that underlies most theories of skill learning:
that more skilled agents take fewer redundant or backtracking
actions than less skilled agents (e.g., Anderson, 1982; Lo-
gan, 1988; Newell & Rosenbloom, 1981). Intuitively, skilled
agents ought to make fewer mistakes than unskilled agents
and therefore ought to backtrack less and take fewer redun-
dant actions. However, our studies of how people improve
at playing the videogame Tetris reveal that sometimes getting
better means backtracking more. Better players use the world
better, even in the limited world of a Tetris board. Conse-
quently, we explain the observed increase in backtracking as
the result of interactive search in which agents reduce cogni-
tive load by interleaving internal and external actions.

Previously, we introduced the termepistemic actionto de-
scribe external actions that can be used to reduce the memory,
time, and probability of error of agent-internal computation
(Kirsh & Maglio, 1994). We justified our view by presenting
data collected from Tetris players at all skill levels in which
many examples of recurring backtracking behaviors could be
found. We could not, however, prove that better players per-
formed more epistemic actions. Here we present longitudinal
data on the acquistion of Tetris skill which show that: (a)
Certain sorts of backtracking increase as skill develops; and
(b) despite this increase, Tetris skill resembles other skills in
following the power law of practice (Newell & Rosenbloom,
1981). Taken together, these results support our claim that
epistemic actions play a substantial role in skilled behavior.

In what follows, we first briefly describe Tetris, and then
present analysis and discussion of our behavioral data.
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Figure 1:In Tetris, shapes fall one a time from the top of the
screen, eventually landing on the bottom or on top of shapes
that have already landed. As a shape falls, it can be rotated,
and moved to the right or left. The objective is fill rows of
squares all the way across the screen. Completely filled rows
dissolve and all partially filled rows above move down.

How to Play Tetris

Tetris is a popular videogame in which players maneuver
falling shapes into specific arrangements on the computer
screen. There are seven shapes (which we callzoids): , ,

, , , , . These fall one at a time from the top
of a screen that is 10 squares wide and 30 squares high (see
Figure 1). Each zoid freely falls until it lands on the bottom
edge of the screen or on top of the squares of a zoid that has
already landed. Once a zoid comes to rest, another begins
falling from the top, starting the next Tetrisepisode. While
a zoid falls, the player can control it, eitherrotating it 90�

counterclockwise with a single keystroke, or translating it to
theright or to theleft one square with a single keystroke. To
gain points, the player must carefully land zoids so that rows
fill up with squares all the way across the screen. Filled rows
then disappear and all filled squares above it drop down. This
process is calledclearing rows. As more rows are cleared,
the game speeds up, and controlling how zoids land becomes
more difficult. Filled squares pile up as unfilled, uncleared



rows become buried under poorly placed zoids. The game
ends when the screen becomes clogged with incomplete rows
and new zoids cannot descend. Thus, clearing rows serves the
purposes both of scoring points and of delaying the game’s
end.1

We recorded data from two players who practiced Tetris
for about 20 hourseach, encompassing approximately 40,000
keystroke interactions with the game. Neither participant had
played the game before, and both agreed not to play except
under computer observation during the course of the study.We
now turn to these data.

How Players Improve With Practice
As players practice more, the number of rows they clear—
their game score—increases. As Tetris players know, the rate
of improvement is misleading, for the game speeds up as rows
are cleared. Hence, players encounter different task demands
during the course of a single game.

To ensure that we did not compare experts in high speed
games with novices in slow speed games in our study, we
controlled for the effects of game speed during analysis by
separating episodes into three speeds, slow, medium, and fast,
a division roughly following skill: everyone plays at slow
speeds, better players attain medium speeds, and only the best
players achieve fast speeds. Because both participants always
played part of their games at slow speeds, we will compare
behavior based solely on data gathered from the slow portions
of the games.

Speed-ups Follow the Power Law of Practice
Typically, practice improves performane in accordance with
a power function of practice time or practice trials (Newell
& Rosenbloom, 1981) either by decreasing the time to react
to stimuli by taking a single action (Seibel, 1963), or by
decreasing the overall time it takes to perform a task that
requires a sequence of actions (Crossman, 1959). In Tetris, the
time to perform a sequence of actions can be measured within
an individual episode as the interval between the time the
falling zoid first becomes visibleand the time of the last action
that the player takes (see Figure 2). The time to take a single
action can be measured as the interval between consecutive
keypresses in episodes in which more than one action was
taken (see Figure 3). In addition, another component of the
overall time to place a zoid is the latency of the player’s first
action, that is, the interval between the time the falling zoid
becomes visible in an episode and the time of the player’sfirst
keypress (see Figure 4).

In all three cases, our data indicate that performance speeds
up according to the power law of practice. Figure 5 shows
one example: when plotted on a log-log scale, the time be-
tween keypresses follows a straight line. To see that all our
data are better fit by power curves than by other curves, con-
sider Table 1. Following Newell and Rosenbloom (1981),
we compared the correlations of the best-fit regressions for

1In addition to rotation and translation, the player candrop a
falling zoid instantly to the bottom, effectively placing it in the po-
sition it would eventually land in if no additional keys were pressed.
Dropping is an optional maneuver, and not all players use it. Drop-
ping speeds up the pace of the game, creating shorter episodes with-
out affecting the free-fall rate. We will not discuss dropping.
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Figure 2:The time to place a zoid is defined as the interval
between the time the zoid first appears on the board and the
time of the last action that the player takes to maneuver it.
In this case, the zoid appears at timet1 and the last action is
taken at timet2. The overall time, then, is the intervalt2� t1.
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Figure 3:The time between actions is defined as the interval
between consecutive keypresses. This figure illustrates two
intervals:t2 � t1 andt3 � t2.
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Figure 4:The time of the first action in an episode is measured
from when the zoid first appears on the board. In this figure,
the zoid first appears at timet1 and the first action occurs at
time t2. The time of the first action, then, ist2 � t1.
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Figure 5:The time between consecutive actions decreases following a power function of practice. The data plotted on this graph
are drawn from slow episodes only. The lines are the best-fit linear regressions of the data in log-log space.

Linear Exponential Power Law
T = A�BN T = Be

��N
T = BN
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2
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Time to Place
a Zoid (s)

LA 4.087 47.78 .7711 5.019 0.012 .8020 6.010 0.149 .8306
TM 5.195 53.82 .6781 5.201 0.012 .7162 6.508 0.171 .8481

Time Between
Actions (ms)

LA 370.2 4.693 .7721 374.2 0.016 .8439 488.1 0.214 .9108
TM 392.6 4.743 .8117 396.6 0.015 .8789 510.0 0.202 .9557

Time of First
Action (ms)

LA 936.8 12.23 .7234 975.2 0.016 .7424 1253 0.210 .7515
TM 1117 12.27 .5332 1106 0.013 .5224 1436 0.189 .6906

Table 1:Power curves fit the data better than lines or exponentials. To determine that the players speed upaccording to the power
law, we followed Newell and Rosenbloom’s (1981) method of comparing various regressions—a straight line, an exponential,
and a simple power function—on the data. For the equations shown in the table,T is the performance measure (time),N is
practice block (30-minute intervals),� is the rate of decrease determined by the regression, andB is a constant also determined
by the regression. For both participants and for each measure, a power function fits the data better than a line or an exponential.



lines, exponentials, and simple power functions.2 As the
table shows, in each case, the data are fit best by a power
function of practice. This means thatTetris skill is like most
other skillsbecause power-law improvement is universal (see
Newell & Rosenbloom, 1981).

Because players become faster with practice, one might
expect that players’ actions also become more precise. That
is, Tetris experts should not only take action faster than be-
ginners, but they should take only the actions necessary to
maneuver the falling zoid to its final position and orienta-
tion because experts make fewer mistakes, backtrack less, or
simply see the solution sooner than beginners do. As we
will show, our data indicate just the opposite:the number of
apparently extraneous actions increases with practice.This
result is surprising because theories that explain power-law
improvement, for instance, by accumulating chunks (Newell
& Rosenbloom, 1981) or cases (Logan, 1988), assume that be-
havior becomes more efficient and economical with practice
(Crossman, 1959).

Backtracking Increases With Skill
As stated, we found that sometimes more skilled Tetris players
actually take moreextraactions—that is, actions that are later
undone by backtracking—than less skilled players. To see that
backtracking increases with skill, let us definebacktracking
or extra actions in Tetris to be actions that do not lie on
the shortest path from the falling zoid’s initial location and
orientation to its final location and orientation (see Figure 6).

Using this definition of backtracking, we calculated the
mean number of extra rotations. For analysis, we grouped
the data into three consecutive six-hour intervals. We first
calculated the mean number of extra rotations per episode for
each game, and then used these averages as the raw scores for
analysis. Figure 7 illustrates the results for LA.3 As shown,
the average number of extra rotations per episode is signif-
icantly greater in expert games than in intermediate games.
Backtracking increases with practice.

Now it may be objected that because the average number
of extra rotations for LA is only around 0.2 per epsiode, extra
rotations must occur relatively infrequently. Extra rotations
occur in 7% of the episodes in which LA was an expert, in 5%
of the episodes in which he was an intermediate, and in 4% of
the episodes in which he was a beginner. These frequencies
differ significantly (p < :01), but extra rotations are clearly the
exception rather than rule, and therefore it mightbe illustrative
to investigate the contexts in which they occur.

Figure 8 reveals that the percentage of episodes containing
extra rotations varies by zoid type, and that the number of

2Newell and Rosenbloom (1981) also discuss fitting data to gen-
eralized curves by adding an additional parameter to account for
prior experience. In particular, they consider fitting exponentials
of the formT = Be

��N
+ E, and power functions of the form

T = BN
��
+ E, whereE is the additional constant used to rep-

resent prior experience. By incorporating additional parameters,
better fitting regressions can always be found. But because our data
contain only 38 points for each participant, there is the danger of
overfitting the points. Therefore, we used thesimplestfunctions in
each case, that is, the functions containing two (rather than three)
free parameters.

3Becauseof space limitations, the rest of the discussionwill focus
on LA’s data. See Maglio (1995) for discussion of TM’s data.
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Figure 6:Backtracking actionsdo not lie on the shortest path
between a zoid’s initial location and orientation and its final
position. The trajectory shown in (b) is a shortest path. The
trajectories shown in (c) and (d) contain backtracking.
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Figure 7:Extra rotations increase with expertise for LA. More
precisely, the mean number of extra rotations was greater
when LA played at the expert level than when he played at
the beginner level.
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Figure 8:The percentage of episodes containing extra rota-
tions varies both by skill and by zoid type. The data plotted
in this graph show that the extra rotations occur more fre-
quently for and than for other zoids at all skill levels, but
especially at the expert level. Although the number of extra
rotations increases with skill for all zoid types except, the
number of extra rotations increases most forand .

extra rotations increases most for and . These data
suggest that although extra rotations occur infrequently, they
cannot be the result of simple motor errors. This follows
because motor mistakesought to affecteach type of zoid
equally. If extra rotations result from a baseline error in motor
control processes (i.e., experts can recover from overshooting
the desired orientation but beginners cannot), there is no a
priori reason to suppose that the frequency of errors for
would be less than the the frequency of errors for. Errors
should be distributed randomly. Because the percentage of
extra rotations differs among zoid types, the conjecture that
extra rotations are the result of recovering from simple motor
mistakes must be ruled out.

Perhaps, however, extraneous rotations result from percep-
tual errors. For example, perceptual confusion might result
when the falling zoid is but there is a natural place to put

and not . More precisely, let us define amirror episode
to be a board configuration in which any placement of the
falling zoid will create a hole, but in which some placement
of the falling zoid’s mirror image does not (see Figure 9).
Obviously, mirror episodes can only occur for the zoids with
mirror images: and . In this case, the percentage
of extra rotations in mirror episodes does not differ from the
percentage of extra rotations in non-mirror episodes for the
relevant types of zoids (see Figure 10). Thus, backtracking
rotations are not the result of this type of perceptual error.

Early Rotations Aid Decision Making

We conjecture that rather than being the result of motor or
perceptual errors, extra rotations are computationally efficient
epistemic actions. For instance, extra rotations might help the
player decide where to place the fallingzoid. If this is the case,

M i r r o r  I m a g e

Figure 9:In mirror episodes, there is a good place to put the
falling zoid’s mirror image but no good place to put the falling
zoid itself. If players backtrack more because they make
perceptual mistakes, extra rotations might be more frequent
in mirror episodes.
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Figure 10:The frequency of extra rotations does not depend on
mirror episodes for LA. Within each skill level, the percentage
of extra rotations does not differ significantly between the
mirror and non-mirror conditions (�2 < 1 in all cases).

we would expect extra rotations generally to occurbeforethe
player has decided where to put the zoid. In particular, if a
zoid is rotated into its final orientation before a player has
made a final decision about orientation, then the player might
continue to rotate the zoid to assist decision making. This
implies that extra rotations should occur most often when the
zoid is in its final orientationbefore the player is ready to
judge whether the orientation is correct. This might happen
in two ways: either because the player rotates the zoid very
rapidly soon after it appears, or because the zoid appears on
the board close to its final orientation. And in fact, the data
for LA show that extra rotations do occur primarily when the
zoid is in its final orientation early in the decision-making
process (see Figure 11). In general, the final decision about
orientation is not made much before 1130 milliseconds. For

, the mean time to put the zoid into its final orientation is
1127 ms (SD = 99 ms), and for and the mean is 1122
ms (SD = 71 ms). As Figure 11 shows, however, the mean
time that these zoids are rotated into their final orientation
and then later unnecessarily rotated is 400–500 milliseconds
earlier. For , the mean time is 676 ms (SD = 149 ms),
and for and the mean time is 754 ms (SD = 296 ms). If
extra rotations were the result of motor or perceptual mistakes,
however, there is no reason to suppose that they would occur
most often early in an episode. Thus, it seems that external
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Figure 11:The mean time at which the falling zoid is first
rotated into its target orientation is less when there are extra
rotations than when there are no extra rotations. The data
shown are from slow episodes in which LA was an expert.
The mean time with extra rotations differs significantly from
the mean time without in both cases: for , t(198) =

2:82; p < :005; for , t(293) = 2:24; p < :026.

rotation is being used to help make a placement decision.
To summarize, the number of extraneous rotations per-

formed by LA increased with skill. This finding is coun-
terintuitivebecause skilled players would be expected to head
more precisely toward their goals. Yet because Tetris perfor-
mance improves according to a power function of practice,
Tetris skill must be like most other skills. Taken together,
we believe these results support our hypothesis that redundant
actions are epistemic actions which both simplify perceptual
computation and play a natural role in skilled behavior (Kirsh
& Maglio, 1994). We conclude with a brief discussion of
some implications of this view.

Epistemic Actions Simplify Perception
It is no surprise, of course, that people offload symbolic com-
putation (e.g., preferring paper and pencil to mental arith-
metic; Hitch, 1978), but it is a surprise to discover that people
offload perceptual computation as well. In Tetris, we conjec-
ture that extra rotations are used to simplify the search for the
best zoid placement by cueing retrieval from an orientation-
specific index of zoids and board configurations (Maglio,
1995). In this way, we believe Tetris players set up their
external environments to facilitate perceptual processing—
much as gin rummy players physically organize the cards
they have been dealt (Kirsh, 1995), and much as airline pilots
place external markers to help keep track of appropriate speed
and flap settings (Hutchins, 1995).

There is empirical evidence that people minimize their use
of perceptual computational resources. For example, Ballard,
Hayhoe and Pelz (1995) found that people performing a block-
arranging task organized their actions and eye movements so
as to minimize their working memory load. Rather than using
memory of the visual scene to guide their actions, participants
tended instead to move their eyes to gain just the information
needed for theirnextaction. These findings suggest that the

cost of moving the eyes to gather information is low relative
to the cost of using short-term memory. It follows that serial
processing (i.e., interposing eye movements between internal
computations) is more computationally efficient than parallel
processing (taking in all the information at once and calculat-
ing a plan) because of the high cost of internally holding and
using partial results.

But we believe the idea that agents can rely on the world
to provide an external memory which substitutes for inter-
nal memory (e.g., O’Regan, 1992) is only part of the story.
Whereas eye movements are active from the point of view of
the visual system—they serve to change the focus, and there-
fore to act on the agent’s perceptual input—they are passsive
from the point of view of the task environment. By contrast,
skilled Tetris players’ extra rotations areactivein the task en-
vironment yet change the perceptual input in much the same
way that eye movements do. External rotations do more work
than eye movements because rotation is a domain action. Ro-
tating the zoid actually changes the stimulus, whereas moving
the eyes does not. Thus, when physically rotating the zoid
for its computational effect, the external world functions not
as a passive memory buffer, simply holding information to be
picked up by looking, but the world in interaction with the
agent functions more like a working memory system, that is,
like an interactive visuo-spatial sketchpad.
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